IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v289y2021ics030626192100221x.html
   My bibliography  Save this article

Predicting energy harvesting performance of a random nonlinear dielectric elastomer pendulum

Author

Listed:
  • Fan, Peng
  • Zhu, Liangquan
  • Zhu, Zicai
  • Chen, Hualing
  • Chen, Wei
  • Hu, Hong

Abstract

This paper investigates the energy harvesting (EH) performance of a nonlinear dielectric elastomer pendulum (DEP) under the random narrowband excitation. The DEP that can convert the vibration energy into electrical energy consists of a dielectric elastomer membrane with a mass, which is similar to a spring pendulum. A dynamic analysis model of the nonlinear electromechanical coupling behavior of the DEP under the random narrowband excitation is developed. A prototype of the DEP is designed to evaluate the developed dynamic model, which shows the good agreement. On this basis, the stochastic dynamic behavior of the DEP is analyzed by changing the intensity, the power spectrum density, and the upper limiting frequency of the random narrowband excitation. The EH performance of the DEP under the random narrowband excitation is also studied for diverse system parameters, including the length of the dielectric elastomer membrane, the mass of the DEP, and the load resistance. The conclusions can help guide the design of the DEP in the random vibration environment to improve the EH performance.

Suggested Citation

  • Fan, Peng & Zhu, Liangquan & Zhu, Zicai & Chen, Hualing & Chen, Wei & Hu, Hong, 2021. "Predicting energy harvesting performance of a random nonlinear dielectric elastomer pendulum," Applied Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:appene:v:289:y:2021:i:c:s030626192100221x
    DOI: 10.1016/j.apenergy.2021.116696
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192100221X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kui Di & Kunwei Bao & Haojie Chen & Xinjun Xie & Jianbo Tan & Yixing Shao & Yongxiang Li & Wenjun Xia & Zisheng Xu & Shiju E, 2021. "Dielectric Elastomer Generator for Electromechanical Energy Conversion: A Mini Review," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
    2. Lai, Zhihui & Xu, Junchen & Fang, Shitong & Qiao, Zijian & Wang, Suo & Wang, Chen & Huang, Zhangjun & Zhou, Shengxi, 2023. "Energy harvesting from a hybrid piezo-dielectric vibration energy harvester with a self-priming circuit," Energy, Elsevier, vol. 273(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:289:y:2021:i:c:s030626192100221x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.