IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v255y2019ics0306261919315090.html
   My bibliography  Save this article

Broadband energy harvesting by nonlinear magnetic rolling pendulum with subharmonic resonance

Author

Listed:
  • Kuang, Yang
  • Hide, Rosalie
  • Zhu, Meiling

Abstract

Nonlinear systems may exhibit secondary resonances, which can provide an additional and thus broadened bandwidth for energy harvesting. However, the secondary resonances of nonlinear energy harvesters reported in the literature suffer from low-power output and limited bandwidth. This work proposes a novel magnetic rolling pendulum (MRP) with a large bandwidth and high power output in both primary and secondary resonances for energy harvesting. The MRP employs the rolling motion of a magnetically levitated permanent magnet with minimal mechanical damping. A prototype was fabricated and characterised. An analytical model combined with finite element analysis was developed and validated by experiment. Both experiment and simulation show that the MRP has a linear resonance frequency of 4.6 Hz and peak power of 3.7 mW. It exhibits strong nonlinear behaviours and broadband characteristics with excitation amplitude as low as 2 m/s2 in the primary resonance. As the excitation amplitude is larger than 5 m/s2, the secondary resonance (1/2 order subharmonics) is excited. The responses of the MRP at the subharmonic resonance take the same form as the primary resonance in terms of displacement and power outputs. This helps the subharmonic resonance to produce the same power level as the primary resonance but with a larger bandwidth. When excited at 14 m/s2, the MRP shows 1-mW-bandwidth of 9.7 Hz, 2/3 of which is attributed to the subharmonic resonance.

Suggested Citation

  • Kuang, Yang & Hide, Rosalie & Zhu, Meiling, 2019. "Broadband energy harvesting by nonlinear magnetic rolling pendulum with subharmonic resonance," Applied Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919315090
    DOI: 10.1016/j.apenergy.2019.113822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919315090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Qinxue & Fan, Kangqi & Guo, Jiyuan & Wen, Tao & Gao, Libo & Zhou, Shengxi, 2021. "A cantilever-driven rotor for efficient vibration energy harvesting," Energy, Elsevier, vol. 235(C).
    2. Sonia Bradai & Ghada Bouattour & Dhouha El Houssaini & Olfa Kanoun, 2022. "Vibration Converter with Passive Energy Management for Battery-Less Wireless Sensor Nodes in Predictive Maintenance," Energies, MDPI, vol. 15(6), pages 1-17, March.
    3. Li, Mingxue & Zhang, Yufeng & Li, Kexin & Zhang, Yiwen & Xu, Kaixuan & Liu, Xiaoqiang & Zhong, Shaoxuan & Cao, Jiamu, 2022. "Self-powered wireless sensor system for water monitoring based on low-frequency electromagnetic-pendulum energy harvester," Energy, Elsevier, vol. 251(C).
    4. Kuang, Yang & Chew, Zheng Jun & Ruan, Tingwen & Lane, Tim & Allen, Ben & Nayar, Bimal & Zhu, Meiling, 2021. "Magnetic field energy harvesting from the traction return current in rail tracks," Applied Energy, Elsevier, vol. 292(C).
    5. Tri Nguyen, Hieu & Genov, Dentcho A. & Bardaweel, Hamzeh, 2020. "Vibration energy harvesting using magnetic spring based nonlinear oscillators: Design strategies and insights," Applied Energy, Elsevier, vol. 269(C).
    6. Wang, Wei & Zhang, Ying & Wei, Zon-Han & Cao, Junyi, 2022. "Design and numerical investigation of an ultra-wide bandwidth rolling magnet bistable electromagnetic harvester," Energy, Elsevier, vol. 261(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919315090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.