IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v114y2014icp179-191.html
   My bibliography  Save this article

Dynamic flow control and performance comparison of different concepts of two-phase on-chip cooling cycles

Author

Listed:
  • Marcinichen, Jackson Braz
  • Wu, Duan
  • Paredes, Stephan
  • Thome, John R.
  • Michel, Bruno

Abstract

A hybrid on-chip two-phase cooling cycle specifically designed to cool server boards with chips of high performance computers was experimentally evaluated considering steady-state and transient operation of two parallel pseudo-chips and auxiliary electronics mimicking a real server board. Control strategies were developed and evaluated by reference tracking and disturbance rejection tests considering several setpoints of controlled variables. The hybrid cycle, operating with a common refrigerant R134a as the working fluid, was energetically and exergetically compared with two other cooling cycles experimentally evaluated in a previous study, one driven by an oil-free gear pump and another by an oil-free mini-compressor. The results showed that, for a specific steady state condition and heat load, respectively 28.9%, 51.9% and 62.5% of the energy out of the pump, compressor and hybrid cycles were associated with heat losses. The differences observed between the three cycles were justified firstly due to the concept of the cycles, i.e. cycles with the compressor showed as expected lower thermal performance than that with pump since its appeal is for energy recovery (benefitting from a higher condensing temperature) and secondly due to the irreversibilities observed in drivers, condenser and piping (thermal insulation). In summary, the three cycles proved to be efficient, simple and reliable concepts to cool server boards (CPUs, DIMMs etc.), showing high thermal performance and potential for heat recovery when compared with traditional air-cooling systems in current use in data centers. It can also be said that the pump cycle showed the best results in terms of energy and exergy, with the cooling and heat recovery performances reaching a maximum of about 5 and 1.8 times higher than the other cycles (worth noting that the focus in the present study was two-phase flow control and proof-of-concept of different cooling loops, meaning that no “optimal” system design was attempted and the differences above can be reduced).

Suggested Citation

  • Marcinichen, Jackson Braz & Wu, Duan & Paredes, Stephan & Thome, John R. & Michel, Bruno, 2014. "Dynamic flow control and performance comparison of different concepts of two-phase on-chip cooling cycles," Applied Energy, Elsevier, vol. 114(C), pages 179-191.
  • Handle: RePEc:eee:appene:v:114:y:2014:i:c:p:179-191
    DOI: 10.1016/j.apenergy.2013.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913007654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaqiang, E. & Zhao, Xiaohuan & Liu, Haili & Chen, Jianmei & Zuo, Wei & Peng, Qingguo, 2016. "Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe," Applied Energy, Elsevier, vol. 175(C), pages 218-228.
    2. Sharma, Chander Shekhar & Tiwari, Manish K. & Zimmermann, Severin & Brunschwiler, Thomas & Schlottig, Gerd & Michel, Bruno & Poulikakos, Dimos, 2015. "Energy efficient hotspot-targeted embedded liquid cooling of electronics," Applied Energy, Elsevier, vol. 138(C), pages 414-422.
    3. Oró, Eduard & Depoorter, Victor & Garcia, Albert & Salom, Jaume, 2015. "Energy efficiency and renewable energy integration in data centres. Strategies and modelling review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 429-445.
    4. Zhang, Penglei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2015. "Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer," Applied Energy, Elsevier, vol. 160(C), pages 10-17.
    5. Pollock, Daniel T. & Yang, Zehao & Wen, John T., 2015. "Dryout avoidance control for multi-evaporator vapor compression cycle cooling," Applied Energy, Elsevier, vol. 160(C), pages 266-285.
    6. Jagirdar, Mrinal & Lee, Poh Seng, 2017. "A diagnostic tool for detection of flow-regimes in a microchannel using transient wall temperature signal," Applied Energy, Elsevier, vol. 185(P2), pages 2232-2244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:114:y:2014:i:c:p:179-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.