IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1855-1862.html
   My bibliography  Save this article

The fate of sulphur in the Cu-based Chemical Looping with Oxygen Uncoupling (CLOU) Process

Author

Listed:
  • Adánez-Rubio, Iñaki
  • Abad, Alberto
  • Gayán, Pilar
  • García-Labiano, Francisco
  • de Diego, Luis F.
  • Adánez, Juan

Abstract

The Chemical Looping with Oxygen Uncoupling (CLOU) process is a type of Chemical Looping Combustion (CLC) technology that allows the combustion of solid fuels with air, as with conventional combustion, through the use of oxygen carriers that release gaseous oxygen inside the fuel reactor. The aim of this work was to study the behaviour of the sulphur present in fuel during CLOU combustion. Experiments using lignite as fuel were carried out in a continuously operated 1.5kWth CLOU unit during more than 15h. Particles containing 60wt.% CuO on MgAl2O4, prepared by spray drying, were used as the oxygen carrier in the CLOU process. The temperature in the fuel reactor varied between 900 and 935°C. CO2 capture, combustion efficiency and the sulphur split between fuel and air reactor streams in the process were analysed. Complete combustion of the fuel to CO2 and H2O was found in all experiments. Most of the sulphur introduced with the fuel exited as SO2 at the fuel reactor outlet, although a small amount of SO2 was measured at the air reactor outlet. The SO2 concentration in the air reactor exit flow decreased as the temperature in the fuel reactor increased. A carbon capture efficiency of 97.6% was achieved at 935°C, with 87.9wt.% of the total sulphur exiting as SO2 in the fuel reactor. Both the reactivity and oxygen transport capacity of the oxygen carrier were unaffected during operation with a high sulphur content fuel, and agglomeration problems did not occur. Predictions were calculated regarding the use of a carbon separation system in the CLOU process in order to reduce sulphur emissions. Coals with high sulphur content, such as lignite and anthracite, would require a carbon separation system in order to comply with legislation governing sulphur-limits. In conclusion, coals with a high sulphur content can be burnt in a CLOU process using Cu-based material to obtain high carbon capture efficiencies.

Suggested Citation

  • Adánez-Rubio, Iñaki & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2014. "The fate of sulphur in the Cu-based Chemical Looping with Oxygen Uncoupling (CLOU) Process," Applied Energy, Elsevier, vol. 113(C), pages 1855-1862.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1855-1862
    DOI: 10.1016/j.apenergy.2013.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913005291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abad, Alberto & Pérez-Vega, Raúl & de Diego, Luis F. & García-Labiano, Francisco & Gayán, Pilar & Adánez, Juan, 2015. "Design and operation of a 50kWth Chemical Looping Combustion (CLC) unit for solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 295-303.
    2. Lihuai Peng & Min Zheng, 2024. "Optimizing S Chemical Looping Combustion with Cu-Fe Combined Oxygen Carriers: Performance and Mechanistic Insights," Energies, MDPI, vol. 17(20), pages 1-21, October.
    3. Abad, Alberto & Adánez, Juan & Gayán, Pilar & de Diego, Luis F. & García-Labiano, Francisco & Sprachmann, Gerald, 2015. "Conceptual design of a 100MWth CLC unit for solid fuel combustion," Applied Energy, Elsevier, vol. 157(C), pages 462-474.
    4. Bayham, Samuel & McGiveron, Omar & Tong, Andrew & Chung, Elena & Kathe, Mandar & Wang, Dawei & Zeng, Liang & Fan, Liang-Shih, 2015. "Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal," Applied Energy, Elsevier, vol. 145(C), pages 354-363.
    5. Adánez-Rubio, Iñaki & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2017. "Coal combustion with a spray granulated Cu-Mn mixed oxide for the Chemical Looping with Oxygen Uncoupling (CLOU) process," Applied Energy, Elsevier, vol. 208(C), pages 561-570.
    6. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    7. Chung, Cheng & Pottimurthy, Yaswanth & Xu, Mingyuan & Hsieh, Tien-Lin & Xu, Dikai & Zhang, Yitao & Chen, Yu-Yen & He, Pengfei & Pickarts, Marshall & Fan, Liang-Shih & Tong, Andrew, 2017. "Fate of sulfur in coal-direct chemical looping systems," Applied Energy, Elsevier, vol. 208(C), pages 678-690.
    8. Hamers, H.P. & Romano, M.C. & Spallina, V. & Chiesa, P. & Gallucci, F. & van Sint Annaland, M., 2015. "Boosting the IGCLC process efficiency by optimizing the desulfurization step," Applied Energy, Elsevier, vol. 157(C), pages 422-432.
    9. Wang, Zhe & Fan, Weiyu & Zhang, Guangqing & Dong, Shuang, 2016. "Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production," Applied Energy, Elsevier, vol. 168(C), pages 1-12.
    10. García-Labiano, F. & de Diego, L.F. & Gayán, P. & Abad, A. & Cabello, A. & Adánez, J. & Sprachmann, G., 2014. "Energy exploitation of acid gas with high H2S content by means of a chemical looping combustion system," Applied Energy, Elsevier, vol. 136(C), pages 242-249.
    11. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    12. Imtiaz, Qasim & Broda, Marcin & Müller, Christoph R., 2014. "Structure–property relationship of co-precipitated Cu-rich, Al2O3- or MgAl2O4-stabilized oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 119(C), pages 557-565.

    More about this item

    Keywords

    CO2 capture; Cu-based oxygen carrier; CLOU; Coal; Sulphur;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1855-1862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.