IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v488y2025ics0096300324005873.html
   My bibliography  Save this article

Distributed adaptive moving horizon estimation for multi-sensor networks subject to quantization effects

Author

Listed:
  • Lv, Yuan-Wei
  • Yang, Guang-Hong
  • Dimirovski, Georgi Marko

Abstract

This paper investigates the distributed state estimation problem for multi-sensor networks with quantized measurements. Within the Bayesian framework, a distributed adaptive moving horizon estimation algorithm is developed. Unlike the existing methods regarding quantized errors roughly as bounded uncertainties, the posterior distributions of the errors are demanded to be derived. To overcome the difficulty of evaluating the posterior distributions for series of the states and quantized errors jointly, the variational Bayesian methodology is adopted to approximate the true distributions. Based on the fixed-point iteration method, the update rules are analytically derived, with the convergence criterion provided. Furthermore, by incorporating the average consensus algorithm into the prediction process, all sensors can achieve consensus on their estimates in a distributed manner. Finally, a numerical example of target tracking under logarithmic and uniform quantization effects is given to illustrate the validity of the proposed algorithm.

Suggested Citation

  • Lv, Yuan-Wei & Yang, Guang-Hong & Dimirovski, Georgi Marko, 2025. "Distributed adaptive moving horizon estimation for multi-sensor networks subject to quantization effects," Applied Mathematics and Computation, Elsevier, vol. 488(C).
  • Handle: RePEc:eee:apmaco:v:488:y:2025:i:c:s0096300324005873
    DOI: 10.1016/j.amc.2024.129126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324005873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jiajia & Wei, Guoliang & Li, Wangyan, 2022. "Unscented Tobit Kalman filtering for switched nonlinear systems with censored measurement," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    2. Zhao, Huarong & Peng, Li & Yu, Hongnian, 2022. "Quantized model-free adaptive iterative learning bipartite consensus tracking for unknown nonlinear multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    3. Gao, Rui & Yang, Guang-Hong, 2022. "Sampled-data distributed state estimation with multiple transmission channels under denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    4. Peng, Zhinan & Hu, Jiangping & Shi, Kaibo & Luo, Rui & Huang, Rui & Ghosh, Bijoy Kumar & Huang, Jiuke, 2020. "A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    5. Liu, Dan & Wang, Zidong & Liu, Yurong & Alsaadi, Fuad E., 2021. "Recursive filtering for stochastic parameter systems with measurement quantizations and packet disorders," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Baoxing & Han, Tao & Xiao, Bo & Zhan, Xi-Sheng & Yan, Huaicheng, 2022. "Leader-following bipartite consensus of multiple uncertain Euler-Lagrange systems under deception attacks," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    2. Yan, Zhiguo & Zhang, Min & Chang, Gaizhen & Lv, Hui & Park, Ju H., 2022. "Finite-time annular domain stability and stabilization of Itô stochastic systems with Wiener noise and Poisson jumps-differential Gronwall inequality approach," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    3. Wang, Yun & Fang, Tian & Kong, Qingkai & Li, Feng, 2024. "Zero-sum game-based optimal control for discrete-time Markov jump systems: A parallel off-policy Q-learning method," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    4. Zhou, Xingyu & Tian, Yang & Wang, Haoping, 2022. "Neural network state observer-based robust adaptive fault-tolerant quantized iterative learning control for the rigid-flexible coupled robotic systems with unknown time delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    5. Zhao, Huarong & Peng, Li & Yu, Hongnian, 2022. "Quantized model-free adaptive iterative learning bipartite consensus tracking for unknown nonlinear multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    6. Meng, Hao & Pang, Denghao & Cao, Jinde & Guo, Yechen & Niazi, Azmat Ullah Khan, 2024. "Optimal bipartite consensus control for heterogeneous unknown multi-agent systems via reinforcement learning," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    7. Wang, Xiaoling & Su, Housheng, 2020. "Completely model-free RL-based consensus of continuous-time multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    8. Hou, Rui & Cui, Lizhi & Bu, Xuhui & Yang, Junqi, 2021. "Distributed formation control for multiple non-holonomic wheeled mobile robots with velocity constraint by using improved data-driven iterative learning," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    9. Li, Xiaoqing & Nguang, Sing Kiong & She, Kun & Cheng, Jun & Zhong, Shouming, 2021. "Resilient controller synthesis for Markovian jump systems with probabilistic faults and gain fluctuations under stochastic sampling operational mechanism," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    10. Chen, Weilu & Hu, Jun & Wu, Zhihui & Yi, Xiaojian & Liu, Hongjian, 2024. "Protocol-based fault detection for state-saturated systems with sensor nonlinearities and redundant channels," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    11. Li, Jiaxing & Hu, Jun & Cheng, Jun & Wei, Yunliang & Yu, Hui, 2022. "Distributed filtering for time-varying state-saturated systems with packet disorders: An event-triggered case," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    12. Mo, Wenjun & Bao, Haibo, 2024. "Mean-square bounded synchronization of fractional-order chaotic Lur’e systems under deception attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    13. Wang, Changlin, 2024. "Social media platform-oriented topic mining and information security analysis by big data and deep convolutional neural network," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    14. Jinfeng Wang & Hui Dong & Fenghua Chen & Mai The Vu & Ali Dokht Shakibjoo & Ardashir Mohammadzadeh, 2023. "Formation Control of Non-Holonomic Mobile Robots: Predictive Data-Driven Fuzzy Compensator," Mathematics, MDPI, vol. 11(8), pages 1-21, April.
    15. Chen, Xiaofeng & Lin, Dongyuan & Li, Hua & Cheng, Zhi, 2025. "Minimum error entropy high-order extend Kalman filter with fiducial points," Applied Mathematics and Computation, Elsevier, vol. 487(C).
    16. Jia, Guolong & Yang, Qing & Liu, Jinxu & Shen, Hao, 2025. "Reinforcement learning-based linear quadratic tracking control for partially unknown Markov jump singular interconnected systems," Applied Mathematics and Computation, Elsevier, vol. 491(C).
    17. Shen, Ziwen & Dong, Tao & Huang, Tingwen, 2025. "Data-driven bipartite synchronization control of multi-agent systems with asymmetric input saturation over switching networks," Applied Mathematics and Computation, Elsevier, vol. 494(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:488:y:2025:i:c:s0096300324005873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.