IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v422y2022ics0096300322000819.html
   My bibliography  Save this article

Spectral determination of graphs with one positive anti-adjacency eigenvalue

Author

Listed:
  • Lei, Xingyu
  • Wang, Jianfeng

Abstract

The anti-adjacency matrix (or eccentricity matrix) of a graph is obtained from its distance matrix by retaining for each row and each column only the largest distances. This matrix can be viewed as the opposite of the adjacency matrix, which is, on the contrary, obtained from the distance matrix of a graph by keeping for each row and each column only the distances being 1. In this paper, we prove that the graphs with exactly one positive anti-adjacency eigenvalue are determined by the anti-adjacency spectra. As corollaries, the well-known (generalized) friendship graphs and windmill graphs are shown to be determined by their anti-adjacency spectra.

Suggested Citation

  • Lei, Xingyu & Wang, Jianfeng, 2022. "Spectral determination of graphs with one positive anti-adjacency eigenvalue," Applied Mathematics and Computation, Elsevier, vol. 422(C).
  • Handle: RePEc:eee:apmaco:v:422:y:2022:i:c:s0096300322000819
    DOI: 10.1016/j.amc.2022.126995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322000819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.126995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Dam, E.R. & Haemers, W.H., 2007. "Developments on Spectral Characterizations of Graphs," Discussion Paper 2007-33, Tilburg University, Center for Economic Research.
    2. van Dam, E.R. & Haemers, W.H., 2002. "Which Graphs are Determined by their Spectrum?," Discussion Paper 2002-66, Tilburg University, Center for Economic Research.
    3. Topcu, Hatice & Sorgun, Sezer, 2018. "The kite graph is determined by its adjacency spectrum," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 134-142.
    4. Das, Kinkar Ch. & Liu, Muhuo, 2017. "Kite graphs determined by their spectra," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 74-78.
    5. Yuan, Bo-Jun & Wang, Yi & Xu, Jing, 2020. "Characterizing the mixed graphs with exactly one positive eigenvalue and its application to mixed graphs determined by their H-spectra," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    6. Haemers, Willem H. & Sorgun, Sezer & Topcu, Hatice, 2019. "On the spectral characterization of mixed extensions of P 3," Other publications TiSEM d3aad4e5-24f2-499d-a57a-9, Tilburg University, School of Economics and Management.
    7. Abiad, Aida & Alfaro, Carlos A., 2021. "Enumeration of cospectral and coinvariant graphs," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. R. Rakshith, 2022. "Signless Laplacian spectral characterization of some disjoint union of graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(1), pages 233-245, March.
    2. Xiaoyun Yang & Ligong Wang, 2020. "Laplacian Spectral Characterization of (Broken) Dandelion Graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(3), pages 915-933, September.
    3. Haemers, W.H. & Ramezani, F., 2009. "Graphs Cospectral with Kneser Graphs," Discussion Paper 2009-76, Tilburg University, Center for Economic Research.
    4. van Dam, E.R. & Haemers, W.H., 2010. "An Odd Characterization of the Generalized Odd Graphs," Other publications TiSEM 2478f418-ae83-4ac3-8742-2, Tilburg University, School of Economics and Management.
    5. van Dam, E.R. & Haemers, W.H., 2010. "An Odd Characterization of the Generalized Odd Graphs," Discussion Paper 2010-47, Tilburg University, Center for Economic Research.
    6. Al-Yakoob, Salem & Kanso, Ali & Stevanović, Dragan, 2022. "On Hosoya’s dormants and sprouts," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    7. van Dam, E.R. & Omidi, G.R., 2011. "Graphs whose normalized laplacian has three eigenvalues," Other publications TiSEM d3b7fa76-22b5-4a9a-8706-a, Tilburg University, School of Economics and Management.
    8. Yuan, Bo-Jun & Wang, Yi & Xu, Jing, 2020. "Characterizing the mixed graphs with exactly one positive eigenvalue and its application to mixed graphs determined by their H-spectra," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    9. Saeree Wananiyakul & Jörn Steuding & Janyarak Tongsomporn, 2022. "How to Distinguish Cospectral Graphs," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    10. Fei Wen & Qiongxiang Huang & Xueyi Huang & Fenjin Liu, 2018. "On the Laplacian spectral characterization of Π-shape trees," Indian Journal of Pure and Applied Mathematics, Springer, vol. 49(3), pages 397-411, September.
    11. Haemers, W.H. & Ramezani, F., 2009. "Graphs Cospectral with Kneser Graphs," Other publications TiSEM 386fd2ad-65f2-42b6-9dfc-1, Tilburg University, School of Economics and Management.
    12. Tianyi Bu & Lizhu Sun & Wenzhe Wang & Jiang Zhou, 2014. "Main Q-eigenvalues and generalized Q-cospectrality of graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 45(4), pages 531-538, August.
    13. Cui, Shu-Yu & Tian, Gui-Xian, 2017. "The spectra and the signless Laplacian spectra of graphs with pockets," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 363-371.
    14. Xue, Jie & Liu, Shuting & Shu, Jinlong, 2018. "The complements of path and cycle are determined by their distance (signless) Laplacian spectra," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 137-143.
    15. Fei Wen & Qiongxiang Huang & Xueyi Huang & Fenjin Liu, 2015. "The spectral characterization of wind-wheel graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(5), pages 613-631, October.
    16. Topcu, Hatice & Sorgun, Sezer, 2018. "The kite graph is determined by its adjacency spectrum," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 134-142.
    17. Maiorino, Enrico & Rizzi, Antonello & Sadeghian, Alireza & Giuliani, Alessandro, 2017. "Spectral reconstruction of protein contact networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 804-817.
    18. Xihe Li & Ligong Wang & Shangyuan Zhang, 2018. "The Signless Laplacian Spectral Radius of Some Strongly Connected Digraphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 49(1), pages 113-127, March.
    19. Lizhu Sun & Wenzhe Wang & Jiang Zhou & Changjiang Bu, 2015. "Laplacian spectral characterization of some graph join," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(3), pages 279-286, June.
    20. Haemers, W.H., 2005. "Matrices and Graphs," Other publications TiSEM 94b6bd28-71e7-41d3-b978-c, Tilburg University, School of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:422:y:2022:i:c:s0096300322000819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.