IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v401y2021ics0096300321001235.html
   My bibliography  Save this article

Robust stability and stabilization of hybrid fractional-order multi-dimensional systems with interval uncertainties: An LMI approach

Author

Listed:
  • Zhu, Zhen
  • Lu, Jun-Guo

Abstract

The hybrid fractional-order multi-dimensional (N-D) systems described by Roesser model are introduced in this paper. The N-D systems include discrete-time dimensions and fractional-order continuous-time dimensions with fractional-order 0<αi<1. Firstly, some novel sufficient stability conditions for nominal hybrid fractional-order N-D systems are presented. Then, against interval uncertainties, the sufficient conditions for robust stability and stabilization of hybrid fractional-order N-D systems are derived. All the results are in the form of linear matrix inequalities. Finally, illustrative examples are given to verify the validity of our results, and demonstrate that our results are less conservative than the existing ones.

Suggested Citation

  • Zhu, Zhen & Lu, Jun-Guo, 2021. "Robust stability and stabilization of hybrid fractional-order multi-dimensional systems with interval uncertainties: An LMI approach," Applied Mathematics and Computation, Elsevier, vol. 401(C).
  • Handle: RePEc:eee:apmaco:v:401:y:2021:i:c:s0096300321001235
    DOI: 10.1016/j.amc.2021.126075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321001235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Junfeng & Si, Xinhui & Li, Botong & Cao, Limei & Zhang, Peipei, 2020. "The effects of depletion layer for electro-osmotic flow of fractional second-grade viscoelastic fluid in a micro-rectangle channel," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    2. Kumar, Vipin & Malik, Muslim & Debbouche, Amar, 2021. "Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    3. Chen, Shyh-Feng, 2015. "Stability analysis and stabilization of 2-D singular Roesser models," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 779-791.
    4. Qu, Haidong & She, Zihang & Liu, Xuan, 2021. "Neural network method for solving fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    5. Hu, Binxin & Song, Qiankun & Zhao, Zhenjiang, 2020. "Robust state estimation for fractional-order complex-valued delayed neural networks with interval parameter uncertainties: LMI approach," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    6. Wu, Guo-Cheng & Baleanu, Dumitru & Luo, Wei-Hua, 2017. "Lyapunov functions for Riemann–Liouville-like fractional difference equations," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 228-236.
    7. Jakubowska-Ciszek, A. & Walczak, J., 2018. "Analysis of the transient state in a parallel circuit of the class RLβCα," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 287-300.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakthivel, R. & Sweetha, S. & Tatar, N.E. & Panneerselvam, V., 2023. "Delayed reset control design for uncertain fractional-order systems with actuator faults via dynamic output feedback scheme," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Roxana Motorga & Vlad Mureșan & Mihaela-Ligia Ungureșan & Mihail Abrudean & Honoriu Vălean & Iulia Clitan, 2022. "Artificial Intelligence in Fractional-Order Systems Approximation with High Performances: Application in Modelling of an Isotopic Separation Process," Mathematics, MDPI, vol. 10(9), pages 1-32, April.
    3. Di, Ying & Zhang, Jin-Xi & Zhang, Xuefeng, 2023. "Robust stabilization of descriptor fractional-order interval systems with uncertain derivative matrices," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    4. Boulham, Ihab Abderraouf & Boubakir, Ahsene & Labiod, Salim, 2022. "ℒ1 adaptive controller design for a class of fractional order uncertain systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 232-249.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burgos, C. & Cortés, J.-C. & Debbouche, A. & Villafuerte, L. & Villanueva, R.-J., 2019. "Random fractional generalized Airy differential equations: A probabilistic analysis using mean square calculus," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 15-29.
    2. Qu, Hai-Dong & Liu, Xuan & Lu, Xin & ur Rahman, Mati & She, Zi-Hang, 2022. "Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Wang, Jinling & Liang, Jinling & Zhang, Cheng-Tang & Fan, Dongmei, 2021. "Event-triggered non-fragile control for uncertain positive Roesser model with PDT switching mechanism," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    4. Udhayakumar, K. & Rakkiyappan, R. & Li, Xiaodi & Cao, Jinde, 2021. "Mutiple ψ-type stability of fractional-order quaternion-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    5. Zhang, Xiao-Li & Li, Hong-Li & Kao, Yonggui & Zhang, Long & Jiang, Haijun, 2022. "Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    6. Liu, Xiang & Wang, Peiguang & Anderson, Douglas R., 2022. "On stability and feedback control of discrete fractional order singular systems with multiple time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    7. Yang, Dan & Wang, JinRong & O’Regan, D., 2018. "A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 654-671.
    8. Dhayal, Rajesh & Zhu, Quanxin, 2023. "Stability and controllability results of ψ-Hilfer fractional integro-differential systems under the influence of impulses," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Zhang, Shuo & Liu, Lu & Xue, Dingyu, 2020. "Nyquist-based stability analysis of non-commensurate fractional-order delay systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    10. Guo, Ying & Li, Yuze, 2022. "Bipartite leader-following synchronization of fractional-order delayed multilayer signed networks by adaptive and impulsive controllers," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    11. Li, Ruoxia & Cao, Jinde & Xue, Changfeng & Manivannan, R., 2021. "Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    12. Du, Feifei & Jia, Baoguo, 2020. "Finite time stability of fractional delay difference systems: A discrete delayed Mittag-Leffler matrix function approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    13. Mo, Lipo & Yuan, Xiaolin & Yu, Yongguang, 2021. "Containment control for multi-agent systems with fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    14. Zhao, Mingfang & Li, Hong-Li & Zhang, Long & Hu, Cheng & Jiang, Haijun, 2023. "Quasi-synchronization of discrete-time fractional-order quaternion-valued memristive neural networks with time delays and uncertain parameters," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    15. Deng, Jie & Li, Hong-Li & Cao, Jinde & Hu, Cheng & Jiang, Haijun, 2023. "State estimation for discrete-time fractional-order neural networks with time-varying delays and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    16. Liu, Xianggang & Ma, Li, 2020. "Chaotic vibration, bifurcation, stabilization and synchronization control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    17. Wang, Yupin & Li, Xiaodi & Wang, Da & Liu, Shutang, 2022. "A brief note on fractal dynamics of fractional Mandelbrot sets," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    18. Liu, Lu & Xue, Dingyu & Zhang, Shuo, 2019. "Closed-loop time response analysis of irrational fractional-order systems with numerical Laplace transform technique," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 133-152.
    19. Li, Qiang & Liang, Jinling, 2022. "Non-fragile asynchronous state estimation for Markovian switching CVNs with partly accessible mode detection: The discrete-time case," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    20. Fang, Xing & Qiao, Leijie & Zhang, Fengyang & Sun, Fuming, 2023. "Explore deep network for a class of fractional partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:401:y:2021:i:c:s0096300321001235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.