IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v348y2019icp126-152.html
   My bibliography  Save this article

Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks

Author

Listed:
  • Rathinasamy, A.
  • Narayanasamy, J.

Abstract

In this paper, the two-step Maruyama methods of stochastic delay Hopfield neural networks are studied. We have found that under what choices of step-size, the two-step Maruyama methods of stochastic delay Hopfield networks, maintain the stability of exact solutions. The mean-square stability of two-step Maruyama methods of stochastic delay Hopfield neural networks is investigated under suitable conditions. Also, the almost sure exponential stability of two-step Maruyama methods of stochastic delay Hopfield networks is proved using the semi-martingale convergence theorem. Further, the comparisons of stability conditions to the previous results in Liu and Zhu (2015), Rathinasamy (2012) and Ronghua et al. (2010) are given. Numerical experiments are provided to illustrate our theoretical results.

Suggested Citation

  • Rathinasamy, A. & Narayanasamy, J., 2019. "Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 126-152.
  • Handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:126-152
    DOI: 10.1016/j.amc.2018.11.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318310373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.11.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiuping & Cao, Wanrong, 2015. "On mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 373-381.
    2. Liu, Linna & Zhu, Quanxin, 2015. "Almost sure exponential stability of numerical solutions to stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 698-712.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Huasheng & Zhuang, Guangming & Sun, Wei & Li, Yongmin & Lu, Junwei, 2020. "pth moment asymptotic interval stability and stabilization of linear stochastic systems via generalized H-representation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Yu, Peilin & Deng, Feiqi & Sun, Yuanyuan & Wan, Fangzhe, 2022. "Stability analysis of impulsive stochastic delayed Cohen-Grossberg neural networks driven by Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    3. Rathinasamy, Anandaraman & Mayavel, Pichamuthu, 2023. "Strong convergence and almost sure exponential stability of balanced numerical approximations to stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    4. Rathinasamy, Anandaraman & Mayavel, Pichamuthu, 2023. "The balanced split step theta approximations of stochastic neutral Hopfield neural networks with time delay and Poisson jumps," Applied Mathematics and Computation, Elsevier, vol. 455(C).
    5. Wang, Fen & Chen, Yuanlong, 2021. "Mean square exponential stability for stochastic memristor-based neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Li, Zhao-Yan & Shang, Shengnan & Lam, James, 2019. "On stability of neutral-type linear stochastic time-delay systems with three different delays," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 147-166.
    7. Tan, Jianguo & Tan, Yahua & Guo, Yongfeng & Feng, Jianfeng, 2020. "Almost sure exponential stability of numerical solutions for stochastic delay Hopfield neural networks with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenyu Wang & Qiang Ma & Xiaohua Ding, 2020. "Simulating Stochastic Differential Equations with Conserved Quantities by Improved Explicit Stochastic Runge–Kutta Methods," Mathematics, MDPI, vol. 8(12), pages 1-15, December.
    2. Tan, Jianguo & Tan, Yahua & Guo, Yongfeng & Feng, Jianfeng, 2020. "Almost sure exponential stability of numerical solutions for stochastic delay Hopfield neural networks with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Mo, Haoyi & Deng, Feiqi & Zhang, Chaolong, 2017. "Exponential stability of the split-step θ-method for neutral stochastic delay differential equations with jumps," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 85-95.
    4. Rathinasamy, Anandaraman & Mayavel, Pichamuthu, 2023. "Strong convergence and almost sure exponential stability of balanced numerical approximations to stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    5. Rathinasamy, Anandaraman & Mayavel, Pichamuthu, 2023. "The balanced split step theta approximations of stochastic neutral Hopfield neural networks with time delay and Poisson jumps," Applied Mathematics and Computation, Elsevier, vol. 455(C).
    6. Wan, Li & Zhou, Qinghua & Liu, Jie, 2017. "Delay-dependent attractor analysis of Hopfield neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 68-72.
    7. Haoyi Mo & Xueyan Zhao & Feiqi Deng, 2017. "Exponential mean-square stability of the θ-method for neutral stochastic delay differential equations with jumps," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(3), pages 462-470, February.
    8. Li, Min & Huang, Chengming, 2020. "Projected Euler-Maruyama method for stochastic delay differential equations under a global monotonicity condition," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    9. Ahmadian, D. & Farkhondeh Rouz, O. & Ballestra, L.V., 2019. "Stability analysis of split-step θ-Milstein method for a class of n-dimensional stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 413-424.
    10. Nie, Rencan & Cao, Jinde & Zhou, Dongming & Qian, Wenhua, 2019. "Analysis of pulse period for passive neuron in pulse coupled neural network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 277-289.
    11. Zhifu Jia & Cunlin Li, 2023. "Almost Sure Exponential Stability of Uncertain Stochastic Hopfield Neural Networks Based on Subadditive Measures," Mathematics, MDPI, vol. 11(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:126-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.