IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v339y2018icp607-621.html

To apprehend or not to apprehend: A mathematical model for ending student strikes in a university

Author

Listed:
  • Nannyonga, Betty
  • Ssebuliba, Joseph
  • Nakakawa, Juliet
  • Nabiyonga, Betty
  • Mugisha, J.Y.T.

Abstract

A dynamic model for strike propagation in a university with constant admission once per year is developed. We control strikes by signing a no-strike commitment, stopping recruitment of demonstrators and expelling apprehended students. The model was analyzed and results show that enforcing signatures and expelling those who strike will curb strikes in universities. With saturation it could take about 23 hours before a strike breaks out after a grievance, while with self-limitation, the strike might never break out. Direct investment is the best strategy to control strikes, and despite varying intensity during a strike the dynamics remain the same.

Suggested Citation

  • Nannyonga, Betty & Ssebuliba, Joseph & Nakakawa, Juliet & Nabiyonga, Betty & Mugisha, J.Y.T., 2018. "To apprehend or not to apprehend: A mathematical model for ending student strikes in a university," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 607-621.
  • Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:607-621
    DOI: 10.1016/j.amc.2018.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031830599X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yu & Zhang, Liping & Yuan, Sanling, 2018. "The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 248-260.
    2. Huyi Wang & Ge Zhang & Tao Chen & Zhiming Li, 2023. "Threshold Analysis of a Stochastic SIRS Epidemic Model with Logistic Birth and Nonlinear Incidence," Mathematics, MDPI, vol. 11(7), pages 1-17, April.
    3. Zhou, Baoquan & Shi, Ningzhong, 2024. "Analysis of a stochastic SEIS epidemic model motivated by Black–Karasinski process: Probability density function," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    4. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    5. Feng, Tao & Qiu, Zhipeng & Meng, Xinzhu & Rong, Libin, 2019. "Analysis of a stochastic HIV-1 infection model with degenerate diffusion," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 437-455.
    6. Liu, Qun & Jiang, Daqing & He, Xiuli & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a stochastic predator–prey model with distributed delay and general functional response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 273-287.
    7. Cen Song & Sijia Zhou & Kyle Hunt & Jun Zhuang, 2022. "Comprehensive Evolution Analysis of Public Perceptions Related to Pediatric Care: A Sina Weibo Case Study (2013–2020)," SAGE Open, , vol. 12(1), pages 21582440221, March.
    8. Albano, Giuseppina & Giorno, Virginia & Pérez-Romero, Gema & Torres-Ruiz, Francisco de Asis, 2025. "Inference on a stochastic SIR model including growth curves," Computational Statistics & Data Analysis, Elsevier, vol. 212(C).
    9. Wang, Jinling & Jiang, Haijun & Ma, Tianlong & Hu, Cheng, 2019. "Global dynamics of the multi-lingual SIR rumor spreading model with cross-transmitted mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 148-157.
    10. Liu, Yan & Mei, Jingling & Li, Wenxue, 2018. "Stochastic stabilization problem of complex networks without strong connectedness," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 304-315.
    11. Wang, Yan & Qi, Kai & Jiang, Daqing, 2021. "An HIV latent infection model with cell-to-cell transmission and stochastic perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    12. Gamboa, M. & López-García, M. & Lopez-Herrero, M.J., 2024. "On the exact and population bi-dimensional reproduction numbers in a stochastic SVIR model with imperfect vaccine," Applied Mathematics and Computation, Elsevier, vol. 468(C).
    13. Ran, Xue & Hu, Lin & Nie, Lin-Fei & Teng, Zhidong, 2021. "Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    14. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    15. Yu, Zhenhua & Zhang, Jingmeng & Zhang, Yun & Cong, Xuya & Li, Xiaobo & Mostafa, Almetwally M., 2024. "Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    16. Luo, Yantao & Zhang, Long & Teng, Zhidong & Zheng, Tingting, 2021. "Analysis of a general multi-group reaction–diffusion epidemic model with nonlinear incidence and temporary acquired immunity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 428-455.
    17. Zhou, Tong & Yang, Jin & Tan, Yuanshun & Liu, Zijian, 2025. "Threshold dynamics of a stochastic tumor-immune model combined oncolytic virus and chimeric antigen receptor T cell therapies," Chaos, Solitons & Fractals, Elsevier, vol. 197(C).
    18. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    19. Wan, Chen & Li, Tao & Zhang, Wu & Dong, Jing, 2018. "Dynamics of epidemic spreading model with drug-resistant variation on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 17-28.
    20. Lan, Guijie & Chen, Zhewen & Wei, Chunjin & Zhang, Shuwen, 2018. "Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 61-77.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:607-621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.