IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v334y2018icp192-205.html
   My bibliography  Save this article

Shortcut sets for the locus of plane Euclidean networks

Author

Listed:
  • Cáceres, José
  • Garijo, Delia
  • González, Antonio
  • Márquez, Alberto
  • Puertas, María Luz
  • Ribeiro, Paula

Abstract

We study the problem of augmenting the locus Nℓ of a plane Euclidean network N by inserting iteratively a finite set of segments, called shortcut set, while reducing the diameter of the locus of the resulting network. There are two main differences with the classical augmentation problems: the endpoints of the segments are allowed to be points of Nℓ as well as points of the previously inserted segments (instead of only vertices of N), and the notion of diameter is adapted to the fact that we deal with Nℓ instead of N. This increases enormously the hardness of the problem but also its possible practical applications to network design. Among other results, we characterize the existence of shortcut sets, compute them in polynomial time, and analyze the role of the convex hull of Nℓ when inserting a shortcut set. Our main results prove that, while the problem of minimizing the size of a shortcut set is NP-hard, one can always determine in polynomial time whether inserting only one segment suffices to reduce the diameter.

Suggested Citation

  • Cáceres, José & Garijo, Delia & González, Antonio & Márquez, Alberto & Puertas, María Luz & Ribeiro, Paula, 2018. "Shortcut sets for the locus of plane Euclidean networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 192-205.
  • Handle: RePEc:eee:apmaco:v:334:y:2018:i:c:p:192-205
    DOI: 10.1016/j.amc.2018.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318303229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chao & Wang, Li & Sun, Shiwen & Xia, Chengyi, 2018. "Identification of influential spreaders based on classified neighbors in real-world complex networks," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 512-523.
    2. Li, Jie & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2018. "Cascading crashes induced by the individual heterogeneity in complex networks," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 182-192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garijo, Delia & Márquez, Alberto & Rodríguez, Natalia & Silveira, Rodrigo I., 2019. "Computing optimal shortcuts for networks," European Journal of Operational Research, Elsevier, vol. 279(1), pages 26-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    2. Jiang, Lincheng & Zhao, Xiang & Ge, Bin & Xiao, Weidong & Ruan, Yirun, 2019. "An efficient algorithm for mining a set of influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 58-65.
    3. Deng, Zheng-Hong & Huang, Yi-Jie & Gu, Zhi-Yang & Liu, Dan & Gao, Li, 2018. "Multi-games on interdependent networks and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 83-90.
    4. Keng, Ying Ying & Kwa, Kiam Heong & Ratnavelu, Kurunathan, 2021. "Centrality analysis in a drug network and its application to drug repositioning," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    5. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    6. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    7. Hu, Hongping & Wang, Haiyan & Bai, Yanping & Liu, Maoxing, 2019. "Determination of endometrial carcinoma with gene expression based on optimized Elman neural network," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 204-214.
    8. Wang, Zhishuang & Guo, Quantong & Sun, Shiwen & Xia, Chengyi, 2019. "The impact of awareness diffusion on SIR-like epidemics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 134-147.
    9. Zhang, Gui-Qing & Baró, Jordi & Cheng, Fang-Yin & Huang, He & Wang, Lin, 2019. "Avalanche dynamics of a generalized earthquake model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1463-1471.
    10. Hu, Jun & Xia, Chengyi & Li, Huijia & Zhu, Peican & Xiong, Wenjun, 2020. "Properties and structural analyses of USA’s regional electricity market: A visibility graph network approach," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    11. Li, Jie & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2018. "Cascading crashes induced by the individual heterogeneity in complex networks," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 182-192.
    12. Li, Huichun & Zhang, Xue & Zhao, Chengli, 2021. "Explaining social events through community evolution on temporal networks," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    13. Agryzkov, Taras & Tortosa, Leandro & Vicent, Jose F., 2018. "An algorithm to compute data diversity index in spatial networks," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 63-75.
    14. Heike I. Brugger & Adam Douglas Henry, 2019. "Equity of Incentives: Agent-Based Explorations of How Social Networks Influence the Efficacy of Programs to Promote Solar Adoption," Complexity, Hindawi, vol. 2019, pages 1-15, February.
    15. Xu Li & Bin Lv & Binke Lang & Qixiang Chen, 2022. "Exploring the Cascading Failure in Taxi Transportation Networks," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    16. Zhang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Yan, Ming & Li, Yu, 2019. "Strategy preference promotes cooperation in spatial evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 181-188.
    17. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Effect of information spreading to suppress the disease contagion on the epidemic vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 180-187.
    18. Chen, Wei & Hou, Xiaoli & Jiang, Manrui & Jiang, Cheng, 2022. "Identifying systemically important financial institutions in complex network: A case study of Chinese stock market," Emerging Markets Review, Elsevier, vol. 50(C).
    19. Chen, Yi & Ding, Shuai & Zheng, Handong & Zhang, Youtao & Yang, Shanlin, 2018. "Exploring diffusion strategies for mHealth promotion using evolutionary game model," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 148-161.
    20. Wu, Yu’e & Zhang, Zhipeng & Wang, Xinyu & Chang, Shuhua, 2019. "Impact of probabilistic incentives on the evolution of cooperation in complex topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 307-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:334:y:2018:i:c:p:192-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.