IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v298y2017icp65-76.html
   My bibliography  Save this article

A class of initials-dependent dynamical systems

Author

Listed:
  • Ma, Jun
  • Wu, Fuqiang
  • Ren, Guodong
  • Tang, Jun

Abstract

Nonlinear term is critical for emergence of chaos in autonomous dynamical systems. The sampled time series in chaotic system are dependent on the initial selection of variables, while the attractors are invariant for fixed parameters. In this paper, the dynamical behavior of a class of dynamical system is investigated at fixed parameter region. It is found that the state selection is dependent on the initials and the potential mechanism is discussed. It is confirmed that the system can be switched between stable state, periodical state and even chaotic state by selecting appropriate initials even the parameters are fixed. We think that nonlinear cross terms with higher order could account for the emergence of this behavior. It indicates that initial selection and resetting can be also effective to control some chaotic systems, and these chaotic systems could enhance security for possible secure communication because the chaotic attractor depends on the parameter and initials selection as well. In the case of secure communication, the reconstruction of phase space becomes more difficult because the attractors are changed arbitrarily, thus the safety for secure keys is enhanced. For chaos control, when the initials are reset, the controller can be removed and the system can develop to step into the desired target by itself.

Suggested Citation

  • Ma, Jun & Wu, Fuqiang & Ren, Guodong & Tang, Jun, 2017. "A class of initials-dependent dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 65-76.
  • Handle: RePEc:eee:apmaco:v:298:y:2017:i:c:p:65-76
    DOI: 10.1016/j.amc.2016.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316306622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mathiyalagan, K. & Park, Ju H. & Sakthivel, R., 2015. "Synchronization for delayed memristive BAM neural networks using impulsive control with random nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 967-979.
    2. Bao, Haibo & Park, Ju H. & Cao, Jinde, 2015. "Matrix measure strategies for exponential synchronization and anti-synchronization of memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 543-556.
    3. Volos, Ch. K. & Kyprianidis, I.M. & Stouboulos, I.N. & Vaidyanathan, S. & Pham, V.-T., 2016. "Analysis, adaptive control and circuit simulation of a novel nonlinear finance systemAuthor-Name: Tacha, O.I," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 200-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Bao & Tao Jiang & Kaibin Chu & Mo Chen & Quan Xu & Bocheng Bao, 2018. "Memristor-Based Canonical Chua’s Circuit: Extreme Multistability in Voltage-Current Domain and Its Controllability in Flux-Charge Domain," Complexity, Hindawi, vol. 2018, pages 1-13, March.
    2. Li Xiong & Zhenlai Liu & Xinguo Zhang, 2017. "Dynamical Analysis, Synchronization, Circuit Design, and Secure Communication of a Novel Hyperchaotic System," Complexity, Hindawi, vol. 2017, pages 1-23, November.
    3. Ren, Guodong & Xue, Yuxiong & Li, Yuwei & Ma, Jun, 2019. "Field coupling benefits signal exchange between Colpitts systems," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 45-54.
    4. Gao, Chenghua & Qiao, Shuai & An, Xinlei, 2022. "Global multistability and mechanisms of a memristive autapse-based Filippov Hindmash-Rose neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Wang, Chunni & Liu, Zhilong & Hobiny, Aatef & Xu, Wenkang & Ma, Jun, 2020. "Capturing and shunting energy in chaotic Chua circuit," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Liu, Yong & Ren, Guodong & Zhou, Ping & Hayat, Tasawar & Ma, Jun, 2019. "Synchronization in networks of initially independent dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 370-380.
    7. Ma, Jun & Xu, Wenkang & Zhou, Ping & Zhang, Ge, 2019. "Synchronization between memristive and initial-dependent oscillators driven by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    8. Ping Zhou & Meihua Ke, 2017. "A New 3D Autonomous Continuous System with Two Isolated Chaotic Attractors and Its Topological Horseshoes," Complexity, Hindawi, vol. 2017, pages 1-7, November.
    9. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.
    10. Wu, Fuqiang & Zhou, Ping & Alsaedi, Ahmed & Hayat, Tasawar & Ma, Jun, 2018. "Synchronization dependence on initial setting of chaotic systems without equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 124-132.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Deqiang & Zhang, Ruimei & Liu, Yajuan & Zhong, Shouming, 2017. "Sampled-data synchronization of chaotic Lur’e systems via input-delay-dependent-free-matrix zero equality approach," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 34-46.
    2. Li, Ruoxia & Cao, Jinde & Alsaedi, Ahmad & Alsaadi, Fuad, 2017. "Exponential and fixed-time synchronization of Cohen–Grossberg neural networks with time-varying delays and reaction-diffusion terms," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 37-51.
    3. Zhang, Lan & Yang, Xinsong & Xu, Chen & Feng, Jianwen, 2017. "Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 22-30.
    4. Yang, Huilan & Wang, Xin & Zhong, Shouming & Shu, Lan, 2018. "Synchronization of nonlinear complex dynamical systems via delayed impulsive distributed control," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 75-85.
    5. Zhou, Jiamu & Dong, Hailing & Feng, Jianwen, 2017. "Event-triggered communication for synchronization of Markovian jump delayed complex networks with partially unknown transition rates," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 617-629.
    6. Tu, Zhengwen & Ding, Nan & Li, Liangliang & Feng, Yuming & Zou, Limin & Zhang, Wei, 2017. "Adaptive synchronization of memristive neural networks with time-varying delays and reaction–diffusion term," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 118-128.
    7. Qi, Xingnan & Bao, Haibo & Cao, Jinde, 2019. "Exponential input-to-state stability of quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 382-393.
    8. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    9. Qin, Xiaoli & Wang, Cong & Li, Lixiang & Peng, Haipeng & Yang, Yixian & Ye, Lu, 2018. "Finite-time modified projective synchronization of memristor-based neural network with multi-links and leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 302-315.
    10. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    11. Chen, Mengshen & Yang, Xiaofei & Shen, Hao & Yao, Fengqi, 2016. "Finite-time asynchronous H∞ control for Markov jump repeated scalar non-linear systems with input constraints," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 172-180.
    12. Takhi, Hocine & Kemih, Karim & Moysis, Lazaros & Volos, Christos, 2021. "Passivity based sliding mode control and synchronization of a perturbed uncertain unified chaotic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 150-169.
    13. Ratnavelu, K. & Manikandan, M. & Balasubramaniam, P., 2015. "Synchronization of fuzzy bidirectional associative memory neural networks with various time delays," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 582-605.
    14. Su, Haipeng & Luo, Runzi & Huang, Meichun & Fu, Jiaojiao, 2022. "Practical fixed time active control scheme for synchronization of a class of chaotic neural systems with external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    15. Chenhui Wang, 2016. "Adaptive Fuzzy Control for Uncertain Fractional-Order Financial Chaotic Systems Subjected to Input Saturation," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-17, October.
    16. Abdurahman, Abdujelil & Abudusaimaiti, Mairemunisa & Jiang, Haijun, 2023. "Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    17. Li, Ruoxia & Gao, Xingbao & Cao, Jinde, 2019. "Quasi-state estimation and quasi-synchronization control of quaternion-valued fractional-order fuzzy memristive neural networks: Vector ordering approach," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    18. Gao, Bo & Deng, Zheng-hong & Zhao, Da-wei & Song, Qun, 2017. "State analysis of Boolean control networks with impulsive and uncertain disturbances," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 187-192.
    19. Li, Hong-Li & Hu, Cheng & Jiang, Yao-Lin & Wang, Zuolei & Teng, Zhidong, 2016. "Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 142-149.
    20. Jajarmi, Amin & Hajipour, Mojtaba & Baleanu, Dumitru, 2017. "New aspects of the adaptive synchronization and hyperchaos suppression of a financial model," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 285-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:298:y:2017:i:c:p:65-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.