IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i6p1045-1061.html
   My bibliography  Save this article

An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain

Author

Listed:
  • Espadafor, M.
  • Lorite, I.J.
  • Gavilán, P.
  • Berengena, J.

Abstract

Climate change will have important implications in the agriculture of semi-arid regions, such as Southern Spain, where the expected warmer and drier conditions might augment crop water demand. To evaluate these effects, a data set consisting of observed daily values of air temperature, relative humidity, sunshine duration and wind speed from eight weather stations in Andalusia and covering the period 1960-2005 was used for estimating reference evapotranspiration (ETo). ETo was calculated using five methods: the more complex Penman-Monteith FAO-56 (PM) equation, considered as a reference in this study, and four alternative methods with fewer data requirements, Hargreaves, Blaney-Criddle, Radiation and Priestley-Taylor. These methods were compared to PM with respect to ETo average values and trends. The non-parametric Mann-Kendall test was used to evaluate annual and seasonal trends in the main climate variables and ETo. Due to increases in air temperature and solar radiation, and decreases in relative humidity, statistically significant increases in PM-ETo were detected (up to 3.5 mm year-1). Although the Hargreaves equation provided the closest average values to PM, this method did not detect any ETo trend. On the other hand, trends found from Blaney-Criddle and Radiation ETo values were similar to those obtained from PM. In addition, after a local adjustment, these two methods gave accurate ETo average values. Therefore, Blaney-Criddle and Radiation methods have shown themselves to be the most accurate approaches for ETo determination in climate change studies, when available data provided by climate models are limited.

Suggested Citation

  • Espadafor, M. & Lorite, I.J. & Gavilán, P. & Berengena, J., 2011. "An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain," Agricultural Water Management, Elsevier, vol. 98(6), pages 1045-1061, April.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:6:p:1045-1061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(11)00022-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lopez-Urrea, R. & Martin de Santa Olalla, F. & Fabeiro, C. & Moratalla, A., 2006. "Testing evapotranspiration equations using lysimeter observations in a semiarid climate," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 15-26, September.
    2. Pereira, Antonio Roberto & Pruitt, William Oregon, 2004. "Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 66(3), pages 251-257, May.
    3. Utset, Angel & Farre, Imma & Martinez-Cob, Antonio & Cavero, Jose, 2004. "Comparing Penman-Monteith and Priestley-Taylor approaches as reference-evapotranspiration inputs for modeling maize water-use under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 205-219, May.
    4. Numan Mizyed, 2009. "Impacts of Climate Change on Water Resources Availability and Agricultural Water Demand in the West Bank," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2015-2029, August.
    5. Gavilan, P. & Lorite, I.J. & Tornero, S. & Berengena, J., 2006. "Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment," Agricultural Water Management, Elsevier, vol. 81(3), pages 257-281, March.
    6. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Babak Farjad & Anil Gupta & Danielle J. Marceau, 2016. "Annual and Seasonal Variations of Hydrological Processes Under Climate Change Scenarios in Two Sub-Catchments of a Complex Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2851-2865, June.
    2. Mohammad Kousari & Mohammad Asadi Zarch & Hossein Ahani & Hemila Hakimelahi, 2013. "A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005," Climatic Change, Springer, vol. 120(1), pages 277-298, September.
    3. I. García-Garizábal & J. Causapé & R. Abrahao & D. Merchan, 2014. "Impact of Climate Change on Mediterranean Irrigation Demand: Historical Dynamics of Climate and Future Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1449-1462, March.
    4. Obembe, Oladipo S., 2018. "Impact of Climate Change on Groundwater Extraction for Corn Production in Kansas," 2018 Annual Meeting, August 5-7, Washington, D.C. 274309, Agricultural and Applied Economics Association.
    5. Masoud Noshadi & Hossein Ahani, 2015. "Focus on relative humidity trend in Iran and its relationship with temperature changes during 1960–2005," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(6), pages 1451-1469, December.
    6. Nam, Won-Ho & Hong, Eun-Mi & Choi, Jin-Yong, 2015. "Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea?," Agricultural Water Management, Elsevier, vol. 150(C), pages 129-138.
    7. Xiaodong Ren & Diogo S. Martins & Zhongyi Qu & Paula Paredes & Luis S. Pereira, 2016. "Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: II. Trends of ETo and Weather Variables and Related Spatial Patterns," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3793-3814, September.
    8. Cruz-Blanco, M. & Lorite, I.J. & Santos, C., 2014. "An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 131(C), pages 135-145.
    9. Tomas-Burguera, Miquel & Vicente-Serrano, Sergio M. & Grimalt, Miquel & Beguería, Santiago, 2017. "Accuracy of reference evapotranspiration (ETo) estimates under data scarcity scenarios in the Iberian Peninsula," Agricultural Water Management, Elsevier, vol. 182(C), pages 103-116.
    10. Amal Aldababseh & Marouane Temimi & Praveen Maghelal & Oliver Branch & Volker Wulfmeyer, 2018. "Multi-Criteria Evaluation of Irrigated Agriculture Suitability to Achieve Food Security in an Arid Environment," Sustainability, MDPI, vol. 10(3), pages 1-33, March.
    11. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cruz-Blanco, M. & Lorite, I.J. & Santos, C., 2014. "An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 131(C), pages 135-145.
    2. Liu, Xiaoying & Xu, Chunying & Zhong, Xiuli & Li, Yuzhong & Yuan, Xiaohuan & Cao, Jingfeng, 2017. "Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement," Agricultural Water Management, Elsevier, vol. 184(C), pages 145-155.
    3. Jabloun, M. & Sahli, A., 2008. "Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia," Agricultural Water Management, Elsevier, vol. 95(6), pages 707-715, June.
    4. Alexandris, S. & Kerkides, P. & Liakatas, A., 2006. "Daily reference evapotranspiration estimates by the "Copais" approach," Agricultural Water Management, Elsevier, vol. 82(3), pages 371-386, April.
    5. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    6. Landeras, Gorka & Ortiz-Barredo, Amaia & López, Jose Javier, 2008. "Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)," Agricultural Water Management, Elsevier, vol. 95(5), pages 553-565, May.
    7. Chatzithomas, C.D. & Alexandris, S.G., 2015. "Solar radiation and relative humidity based, empirical method, to estimate hourly reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 152(C), pages 188-197.
    8. O.E. Mohawesh, 2011. "Evaluation of evapotranspiration models for estimating daily reference evapotranspiration in arid and semiarid environments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(4), pages 145-152.
    9. Yang, Yang & Luo, Yufeng & Wu, Conglin & Zheng, Hezhen & Zhang, Lei & Cui, Yuanlai & Sun, Ningning & Wang, Li, 2019. "Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecast message for different climate regions across China," Agricultural Water Management, Elsevier, vol. 222(C), pages 386-399.
    10. M. Majidi & A. Alizadeh & M. Vazifedoust & A. Farid & T. Ahmadi, 2015. "Analysis of the Effect of Missing Weather Data on Estimating Daily Reference Evapotranspiration Under Different Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2107-2124, May.
    11. Martí, Pau & González-Altozano, Pablo & López-Urrea, Ramón & Mancha, Luis A. & Shiri, Jalal, 2015. "Modeling reference evapotranspiration with calculated targets. Assessment and implications," Agricultural Water Management, Elsevier, vol. 149(C), pages 81-90.
    12. Osama Mohawesh, 2010. "Spatio-temporal Calibration of Blaney–Criddle Equation in Arid and Semiarid Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2187-2201, August.
    13. Singh Rawat, Kishan & Kumar Singh, Sudhir & Bala, Anju & Szabó, Szilárd, 2019. "Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 213(C), pages 922-933.
    14. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    15. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    16. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    17. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    18. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    19. Nicoletta Cannone & M. Guglielmin & P. Convey & M. R. Worland & S. E. Favero Longo, 2016. "Vascular plant changes in extreme environments: effects of multiple drivers," Climatic Change, Springer, vol. 134(4), pages 651-665, February.
    20. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:6:p:1045-1061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.