IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i1p53-66.html
   My bibliography  Save this article

Crop coefficients and water use for cowpea in the San Joaquin Valley of California

Author

Listed:
  • DeTar, W.R.

Abstract

To improve irrigation planning and management, a modified soil water balance method was used to determine the crop coefficients and water use for cowpea (Vigna unguiculata (L.) Walp.) in an area with a semi-arid climate. A sandy 0.8-ha field was irrigated with a subsurface drip irrigation system, and the soil moisture was closely monitored for two full seasons. The procedure used was one developed for cotton by DeTar [DeTar, W.R., 2004. Using a subsurface drip irrigation system to measure crop water use. Irrig. Sci. 23, 111-122]. Using a test and validate procedure, we first developed a double sigmoidal model to fit the data from the first season, and then we determined how well the data from the second season fit this model. One of the results of this procedure was that during the early part of the season, the crop coefficients were more closely related to days-after-planting (DAP) than to growing-degree-days (GDDs). For the full season, there was little difference in correlations for the various models using DAP and GDD. When the data from the two seasons were merged, the average value for the crop coefficient during the mid-season plateau was 0.986 for the coefficient used with pan evaporation, and it was 1.211 for the coefficient used with a modified Penman equation for ET0 from the California Irrigation Management and Information System (CIMIS). For the Penman-Monteith (P-M) equation, the coefficient was 1.223. These coefficients are about 11% higher than for cotton in the same field with the same irrigation system. A model was developed for the merged data, and when it was combined with the normal weather data for this area, it was possible to predict normal water use on a weekly, monthly and seasonal basis. The normal seasonal water use for cowpea in this area was 669 mm. One of the main findings was that the water use by the cowpea was more closely correlated with pan evaporation than it was with the reference ET from CIMIS or P-M.

Suggested Citation

  • DeTar, W.R., 2009. "Crop coefficients and water use for cowpea in the San Joaquin Valley of California," Agricultural Water Management, Elsevier, vol. 96(1), pages 53-66, January.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:1:p:53-66
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00159-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fapohunda, H. O. & Aina, P. O. & Hossain, M. M., 1984. "Water use -- Yield relations for cowpea and maize," Agricultural Water Management, Elsevier, vol. 9(3), pages 219-224, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Yang, Pengju & Hu, Hongchang & Tian, Fuqiang & Zhang, Zhi & Dai, Chao, 2016. "Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China," Agricultural Water Management, Elsevier, vol. 171(C), pages 21-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Shaozhong & Zhang, Lu & Liang, Yinli & Hu, Xiaotao & Cai, Huanjie & Gu, Binjie, 2002. "Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 55(3), pages 203-216, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:1:p:53-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.