IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v78y2005i1-2p54-66.html
   My bibliography  Save this article

Plant water uptake and water use efficiency of greenhouse tomato cultivars irrigated with saline water

Author

Listed:
  • Reina-Sanchez, A.
  • Romero-Aranda, R.
  • Cuartero, J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Reina-Sanchez, A. & Romero-Aranda, R. & Cuartero, J., 2005. "Plant water uptake and water use efficiency of greenhouse tomato cultivars irrigated with saline water," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 54-66, September.
  • Handle: RePEc:eee:agiwat:v:78:y:2005:i:1-2:p:54-66
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(05)00234-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Dannehl, Dennis & Suhl, Johanna & Huyskens-Keil, Susanne & Ulrichs, Christian & Schmidt, Uwe, 2014. "Effects of a special solar collector greenhouse on water balance, fruit quantity and fruit quality of tomatoes," Agricultural Water Management, Elsevier, vol. 134(C), pages 14-23.
    3. Zhang, Dalong & Jiao, Xiaocong & Du, Qingjie & Song, Xiaoming & Li, Jianming, 2018. "Reducing the excessive evaporative demand improved photosynthesis capacity at low costs of irrigation via regulating water driving force and moderating plant water stress of two tomato cultivars," Agricultural Water Management, Elsevier, vol. 199(C), pages 22-33.
    4. Katsoulas, N. & Sapounas, A. & De Zwart, F. & Dieleman, J.A. & Stanghellini, C., 2015. "Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency," Agricultural Water Management, Elsevier, vol. 156(C), pages 90-99.
    5. Li, Qingming & Wei, Min & Li, Yiman & Feng, Gaili & Wang, Yaping & Li, Shuhao & Zhang, Dalong, 2019. "Effects of soil moisture on water transport, photosynthetic carbon gain and water use efficiency in tomato are influenced by evaporative demand," Agricultural Water Management, Elsevier, vol. 226(C).
    6. Boari, Francesca & Cantore, Vito & Di Venere, Donato & Sergio, Lucrezia & Candido, Vincenzo & Schiattone, Maria Immacolata, 2019. "Pyraclostrobin can mitigate salinity stress in tomato crop," Agricultural Water Management, Elsevier, vol. 222(C), pages 254-264.
    7. Li, Jianshe & Gao, Yanming & Zhang, Xueyan & Tian, Ping & Li, Juan & Tian, Yongqiang, 2019. "Comprehensive comparison of different saline water irrigation strategies for tomato production: Soil properties, plant growth, fruit yield and fruit quality," Agricultural Water Management, Elsevier, vol. 213(C), pages 521-533.
    8. Gulom Bekmirzaev & Baghdad Ouddane & Jose Beltrao & Yoshiharu Fujii, 2020. "The Impact of Salt Concentration on the Mineral Nutrition of Tetragonia tetragonioides," Agriculture, MDPI, vol. 10(6), pages 1-10, June.
    9. Rubio, J.S. & Rubio, F. & Martínez, V. & García-Sánchez, F., 2010. "Amelioration of salt stress by irrigation management in pepper plants grown in coconut coir dust," Agricultural Water Management, Elsevier, vol. 97(10), pages 1695-1702, October.
    10. Esmaili, Maryam & Aliniaeifard, Sasan & Mashal, Mahmoud & Vakilian, Keyvan Asefpour & Ghorbanzadeh, Parisa & Azadegan, Behzad & Seif, Mehdi & Didaran, Fardad, 2021. "Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations," Agricultural Water Management, Elsevier, vol. 258(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:78:y:2005:i:1-2:p:54-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.