IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v32y1996i1p71-83.html
   My bibliography  Save this article

Water balance and nitrate leaching in an irrigated maize crop in SW Spain

Author

Listed:
  • Moreno, F.
  • Cayuela, J. A.
  • Fernandez, J. E.
  • Fernandez-Boy, E.
  • Murillo, J. M.
  • Cabrera, F.

Abstract

No abstract is available for this item.

Suggested Citation

  • Moreno, F. & Cayuela, J. A. & Fernandez, J. E. & Fernandez-Boy, E. & Murillo, J. M. & Cabrera, F., 1996. "Water balance and nitrate leaching in an irrigated maize crop in SW Spain," Agricultural Water Management, Elsevier, vol. 32(1), pages 71-83, November.
  • Handle: RePEc:eee:agiwat:v:32:y:1996:i:1:p:71-83
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(96)01256-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandez, J. E. & Moreno, F. & Murillo, J. M. & Cayuela, J. A. & Fernandez-Boy, E. & Cabrera, F., 1996. "Water use and yield of maize with two levels of nitrogen fertilization in SW Spain," Agricultural Water Management, Elsevier, vol. 29(2), pages 215-233, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asadi, Mohammad Esmaeil & Clemente, Roberto S. & Gupta, Ashim Das & Loof, Rainer & Hansen, Gunner K., 2002. "Impacts of fertigation via sprinkler irrigation on nitrate leaching and corn yield in an acid-sulphate soil in Thailand," Agricultural Water Management, Elsevier, vol. 52(3), pages 197-213, January.
    2. Oyarzun, Ricardo & Arumi, Jose & Salgado, Luis & Marino, Miguel, 2007. "Sensitivity analysis and field testing of the RISK-N model in the Central Valley of Chile," Agricultural Water Management, Elsevier, vol. 87(3), pages 251-260, February.
    3. Fernandez, J. E. & Slawinski, C. & Moreno, F. & Walczak, R. T. & Vanclooster, M., 2002. "Simulating the fate of water in a soil-crop system of a semi-arid Mediterranean area with the WAVE 2.1 and the EURO-ACCESS-II models," Agricultural Water Management, Elsevier, vol. 56(2), pages 113-129, July.
    4. Abrahao, R. & Causapé, J. & García-Garizábal, I. & Merchán, D., 2011. "Implementing irrigation: Salt and nitrate exported from the Lerma basin (Spain)," Agricultural Water Management, Elsevier, vol. 102(1), pages 105-112.
    5. Fernandez, J. E. & Moreno, F. & Murillo, J. M. & Cuevas, M. V. & Kohler, F., 2001. "Evaluating the effectiveness of a hydrophobic polymer for conserving water and reducing weed infection in a sandy loam soil," Agricultural Water Management, Elsevier, vol. 51(1), pages 29-51, October.
    6. Costa, J. L. & Massone, H. & Martinez, D. & Suero, E. E. & Vidal, C. M. & Bedmar, F., 2002. "Nitrate contamination of a rural aquifer and accumulation in the unsaturated zone," Agricultural Water Management, Elsevier, vol. 57(1), pages 33-47, September.
    7. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Homaee, Mehdi & Asadi, Mohammad Esmaeil & Hoogenboom, Gerrit, 2009. "Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates," Agricultural Water Management, Elsevier, vol. 96(6), pages 946-954, June.
    8. Li, Xiaoxin & Hu, Chunsheng & Delgado, Jorge A. & Zhang, Yuming & Ouyang, Zhiyun, 2007. "Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 137-147, April.
    9. Aparicio, V. & Costa, J.L. & Zamora, M., 2008. "Nitrate leaching assessment in a long-term experiment under supplementary irrigation in humid Argentina," Agricultural Water Management, Elsevier, vol. 95(12), pages 1361-1372, December.
    10. Ngouajio, Mathieu & Wang, Guangyao & Goldy, Ronald, 2007. "Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch," Agricultural Water Management, Elsevier, vol. 87(3), pages 285-291, February.
    11. Samperio, Alberto & Moñino, María José & Marsal, Jordi & Prieto, María Henar & Stöckle, Claudio, 2014. "Use of CropSyst as a tool to predict water use and crop coefficient in Japanese plum trees," Agricultural Water Management, Elsevier, vol. 146(C), pages 57-68.
    12. Guo, Huaming & Li, Guanghe & Zhang, Dayi & Zhang, Xu & Lu, Chang'ai, 2006. "Effects of water table and fertilization management on nitrogen loading to groundwater," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 86-98, April.
    13. Castellanos, M.T. & Tarquis, A.M. & Ribas, F. & Cabello, M.J. & Arce, A. & Cartagena, M.C., 2013. "Nitrogen fertigation: An integrated agronomic and environmental study," Agricultural Water Management, Elsevier, vol. 120(C), pages 46-55.
    14. Castellanos, M.T. & Cartagena, M.C. & Ribas, F. & Cabello, M.J. & Arce, A. & Tarquis, A.M., 2013. "Impact of nitrogen uptake on field water balance in fertirrigated melon," Agricultural Water Management, Elsevier, vol. 120(C), pages 56-63.
    15. Castellanos, M.T. & Cartagena, M.C. & Requejo, M.I. & Arce, A. & Cabello, M.J. & Ribas, F. & Tarquis, A.M., 2016. "Agronomic concepts in water footprint assessment: A case of study in a fertirrigated melon crop under semiarid conditions," Agricultural Water Management, Elsevier, vol. 170(C), pages 81-90.
    16. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2016. "Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand," Agricultural Water Management, Elsevier, vol. 168(C), pages 68-77.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    2. Li, Wenlong & Han, Xiaozhuo & Zhang, Yanyu & Li, Zizhen, 2007. "Effects of elevated CO2 concentration, irrigation and nitrogenous fertilizer application on the growth and yield of spring wheat in semi-arid areas," Agricultural Water Management, Elsevier, vol. 87(1), pages 106-114, January.
    3. Li, Wenlong & Li, Zizhen & Li, Weide, 2004. "Effect of the niche-fitness at different water supply and fertilization on yield of spring wheat in farmland of semi-arid areas," Agricultural Water Management, Elsevier, vol. 67(1), pages 1-13, June.
    4. Fernandez, J. E. & Moreno, F. & Murillo, J. M. & Cuevas, M. V. & Kohler, F., 2001. "Evaluating the effectiveness of a hydrophobic polymer for conserving water and reducing weed infection in a sandy loam soil," Agricultural Water Management, Elsevier, vol. 51(1), pages 29-51, October.
    5. Castellanos, M.T. & Cartagena, M.C. & Requejo, M.I. & Arce, A. & Cabello, M.J. & Ribas, F. & Tarquis, A.M., 2016. "Agronomic concepts in water footprint assessment: A case of study in a fertirrigated melon crop under semiarid conditions," Agricultural Water Management, Elsevier, vol. 170(C), pages 81-90.
    6. Adamtey, Noah & Cofie, Olufunke & Ofosu-Budu, K.G. & Ofosu-Anim, J. & Laryea, K.B. & Forster, Dionys, 2010. "Effect of N-enriched co-compost on transpiration efficiency and water-use efficiency of maize (Zea mays L.) under controlled irrigation," Agricultural Water Management, Elsevier, vol. 97(7), pages 995-1005, July.
    7. Fernandez, J. E. & Slawinski, C. & Moreno, F. & Walczak, R. T. & Vanclooster, M., 2002. "Simulating the fate of water in a soil-crop system of a semi-arid Mediterranean area with the WAVE 2.1 and the EURO-ACCESS-II models," Agricultural Water Management, Elsevier, vol. 56(2), pages 113-129, July.
    8. Li, Wenlong & Li, Weide & Li, Zizhen, 2004. "Irrigation and fertilizer effects on water use and yield of spring wheat in semi-arid regions," Agricultural Water Management, Elsevier, vol. 67(1), pages 35-46, June.
    9. Li, Zi-Zhen & Li, Wei-De & Li, Wen-Long, 2004. "Dry-period irrigation and fertilizer application affect water use and yield of spring wheat in semi-arid regions," Agricultural Water Management, Elsevier, vol. 65(2), pages 133-143, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:32:y:1996:i:1:p:71-83. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.