IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v312y2025ics037837742500174x.html
   My bibliography  Save this article

Enhancing root-zone soil moisture estimation using Richards' equation and dynamic surface soil moisture data

Author

Listed:
  • Zha, Xizhuoma
  • Zhu, Wenbin
  • Han, Yan
  • Lv, Aifeng

Abstract

Root-zone soil moisture (RZSM) is a critical variable for accurately modeling hydrological and ecological processes, but its monitoring is challenging due to the spatial and temporal variability at watershed scales. Richards' equation is a fundamental physical equation that accurately captures the dynamics of soil moisture transport in the root zone. However, due to its high sensitivity to input parameters, its application in large-scale spatial domains remains a significant challenge, particularly in regions with sparse meteorological data. This study addresses these challenges by proposing an innovative approach to estimating root-zone soil moisture by integrating dynamic surface soil moisture data into Richards' equation (SSMRE model). This approach encapsulates soil-atmosphere interactions using near-surface soil moisture, simplifying the computational framework and expanding the applicability of Richards' equation to broader spatial scales. Using the Lightning River Basin as a case study, simulations of different vegetation types and boundary conditions indicate that the correlation coefficient (R) for root zone soil moisture(50 cm) is generally greater than 0.7,SSMRE can accurately simulate root zone soil moisture under various lower boundary conditions and vegetation types. The HYDRUS-1D model, which is widely applied, typically uses atmospheric boundary conditions to simulate soil water movement under atmospheric influence. Comparative analysis of the HYDRUS-1D and SSMRE models against site-measured data reveals that for HYDRUS-1D, the correlation coefficients (R) across 5 cm,10 cm,20 cm,50 cm are 0.654, 0.621, 0.549 and 0.48, with root mean square errors (RMSE) of 0.03, 0.03, 0.03, and 0.04, respectively. The SSMRE model exhibits R values of 0.9, 0.85, 0.74, and 0.72, with RMSE values of 0.04, 0.02, 0.04, and 0.05. Demonstrating that our method provides improved accuracy in root-zone soil moisture simulations. The application of the Shuffled Complex Evolution-University of Arizona (SCE-UA) algorithm significantly enhances the model's accuracy. This research establishes a theoretical foundation for estimating multi-layer soil moisture over large spatial scales by integrating satellite-derived near-surface soil moisture data with Richards' equation.

Suggested Citation

  • Zha, Xizhuoma & Zhu, Wenbin & Han, Yan & Lv, Aifeng, 2025. "Enhancing root-zone soil moisture estimation using Richards' equation and dynamic surface soil moisture data," Agricultural Water Management, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s037837742500174x
    DOI: 10.1016/j.agwat.2025.109460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742500174X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Xuezhi & Shao, Dongguo & Liu, Huanhuan, 2014. "Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 132(C), pages 69-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Jun & Li, Huijie & Zhao, Ying & Shao, Ming'an & Zhang, Hailin & Liu, Muxing, 2022. "Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region," Agricultural Water Management, Elsevier, vol. 265(C).
    2. Feng, Zhuangzhuang & Miao, Qingfeng & Shi, Haibin & Feng, Weiying & Li, Xianyue & Yan, Jianwen & Liu, Meihan & Sun, Wei & Dai, Liping & Liu, Jing, 2023. "Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Xu, Baoli & Shao, Dongguo & Tan, Xuezhi & Yang, Xia & Gu, Wenquan & Li, Haoxin, 2017. "Evaluation of soil water percolation under different irrigation practices, antecedent moisture and groundwater depths in paddy fields," Agricultural Water Management, Elsevier, vol. 192(C), pages 149-158.
    4. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    5. Tan, Xuezhi & Shao, Dongguo & Gu, Wenquan & Liu, Huanhuan, 2015. "Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 150(C), pages 67-80.
    6. Hua, Keji & He, Jun & Liao, Bin & He, Tianzhong & Yang, Peng & Zhang, Lei, 2023. "Multi-objective decision-making for efficient utilization of water and fertilizer in paddy fields: A case study in Southern China," Agricultural Water Management, Elsevier, vol. 289(C).
    7. Chen, Shu & Shao, Dongguo & Gu, Wenquan & Xu, Baoli & Li, Haoxin & Fang, Longzhang, 2017. "An interval multistage water allocation model for crop different growth stages under inputs uncertainty," Agricultural Water Management, Elsevier, vol. 186(C), pages 86-97.
    8. Darzi-Naftchali, Abdullah & Karandish, Fatemeh & Šimůnek, Jiří, 2018. "Numerical modeling of soil water dynamics in subsurface drained paddies with midseason drainage or alternate wetting and drying management," Agricultural Water Management, Elsevier, vol. 197(C), pages 67-78.
    9. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Xu, Baoli & Shao, Dongguo & Fang, Longzhang & Yang, Xia & Chen, Shu & Gu, Wenquan, 2019. "Modelling percolation and lateral seepage in a paddy field-bund landscape with a shallow groundwater table," Agricultural Water Management, Elsevier, vol. 214(C), pages 87-96.
    11. Er-Raki, S. & Ezzahar, J. & Merlin, O. & Amazirh, A. & Hssaine, B. Ait & Kharrou, M.H. & Khabba, S. & Chehbouni, A., 2021. "Performance of the HYDRUS-1D model for water balance components assessment of irrigated winter wheat under different water managements in semi-arid region of Morocco," Agricultural Water Management, Elsevier, vol. 244(C).
    12. Li, Danfeng, 2020. "Quantifying water use and groundwater recharge under flood irrigation in an arid oasis of northwestern China," Agricultural Water Management, Elsevier, vol. 240(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s037837742500174x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.