IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v261y2022ics037837742100651x.html
   My bibliography  Save this article

Yield response of a mature hedgerow oil olive orchard to different levels of water stress during pit hardening

Author

Listed:
  • Corell, M.
  • Pérez-López, D.
  • Andreu, L.
  • Recena, R.
  • Centeno, A.
  • Galindo, A.
  • Moriana, A.
  • Martín-Palomo, M.J.

Abstract

Drought sensitivity in olive trees varies throughout the season. The yield response to drought needs to consider the final use of the fruits and harvest date. In Mediterranean climates, the oil accumulation tends to occur in a period of low evaporative demand and during the rainy period. The aim of this work was to evaluate the effect of water stress during pit hardening on the yield components of oil olive trees. The experiment was conducted during three seasons (2017–2019) in a mature hedgerow olive orchard (11 years-old, Arbequina cv). The experiment design was a randomized completed block with 4 repetitions of 4 different irrigation treatments. Treatments were: Control, no water stress throughout the season; Regulated deficit irrigation (RDI)-1, moderate water stress during pit hardening and total recovery after the last week of August; RDI-2, same as RDI-1 but with severe water stress and partial recovery; and sustained deficit irrigation (SDI), constant applied water rate and the same seasonal water than RDI-2. The irrigation scheduling in RDIs were based on the frequencies of the trunk growth rate. No significant differences were found in fruit and oil yield between treatments. There were a significant relationship between water status measurements and fruit and oil yield. Part of the decrease in fruit yield with midday stem water potential (SWP) was related to fruit moisture, as no significant fruit drop was found. Only conditions of water stress in 2017, before the end of endocarp size, were related to a great reduction of fruit volume and, consequently, with fruit and oil yield. The relationship between the percentage of oil in dry weight and SWP was quadratic in different phases. Such relationships could help quantify the water stress level in these periods to maximize oil accumulation.

Suggested Citation

  • Corell, M. & Pérez-López, D. & Andreu, L. & Recena, R. & Centeno, A. & Galindo, A. & Moriana, A. & Martín-Palomo, M.J., 2022. "Yield response of a mature hedgerow oil olive orchard to different levels of water stress during pit hardening," Agricultural Water Management, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s037837742100651x
    DOI: 10.1016/j.agwat.2021.107374
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742100651X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Girón, I.F. & Corell, M. & Martín-Palomo, M.J. & Galindo, A. & Torrecillas, A. & Moreno, F. & Moriana, A., 2015. "Feasibility of trunk diameter fluctuations in the scheduling of regulated deficit irrigation for table olive trees without reference trees," Agricultural Water Management, Elsevier, vol. 161(C), pages 114-126.
    2. Ben-Gal, Alon & Ron, Yonatan & Yermiyahu, Uri & Zipori, Isaac & Naoum, Sireen & Dag, Arnon, 2021. "Evaluation of regulated deficit irrigation strategies for oil olives: A case study for two modern Israeli cultivars," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Approach using trunk growth rate data to identify water stress conditions in olive trees," Agricultural Water Management, Elsevier, vol. 222(C), pages 12-20.
    4. Gómez-del-Campo, María & Pérez-Expósito, María Ángeles & Hammami, Sofiene B.M. & Centeno, Ana & Rapoport, Hava F., 2014. "Effect of varied summer deficit irrigation on components of olive fruit growth and development," Agricultural Water Management, Elsevier, vol. 137(C), pages 84-91.
    5. Grattan, S.R. & Berenguer, M.J. & Connell, J.H. & Polito, V.S. & Vossen, P.M., 2006. "Olive oil production as influenced by different quantities of applied water," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 133-140, September.
    6. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Galindo, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2020. "Stem water potential-based regulated deficit irrigation scheduling for olive table trees," Agricultural Water Management, Elsevier, vol. 242(C).
    7. Gucci, Riccardo & Caruso, Giovanni & Gennai, Clizia & Esposto, Sonia & Urbani, Stefania & Servili, Maurizio, 2019. "Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development," Agricultural Water Management, Elsevier, vol. 212(C), pages 88-98.
    8. Pierantozzi, P. & Torres, M. & Tivani, M. & Contreras, C. & Gentili, L. & Parera, C. & Maestri, D., 2020. "Spring deficit irrigation in olive (cv. Genovesa) growing under arid continental climate: Effects on vegetative growth and productive parameters," Agricultural Water Management, Elsevier, vol. 238(C).
    9. Hueso, A. & Trentacoste, E.R. & Junquera, P. & Gómez-Miguel, V. & Gómez-del-Campo, M., 2019. "Differences in stem water potential during oil synthesis determine fruit characteristics and production but not vegetative growth or return bloom in an olive hedgerow orchard (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    10. Hueso, A. & Camacho, G. & Gómez-del-Campo, M., 2021. "Spring deficit irrigation promotes significant reduction on vegetative growth, flowering, fruit growth and production in hedgerow olive orchards (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 248(C).
    11. Martín-Palomo, M.J. & Corell, M. & Andreu, L. & López-Moreno, Y.E. & Galindo, A. & Moriana, A., 2021. "Identification of water stress conditions in olive trees through frequencies of trunk growth rate," Agricultural Water Management, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanan Ali Alrteimei & Zulfa Hanan Ash’aari & Farrah Melissa Muharram, 2022. "Last Decade Assessment of the Impacts of Regional Climate Change on Crop Yield Variations in the Mediterranean Region," Agriculture, MDPI, vol. 12(11), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Martín-Palomo, M.J. & Corell, M. & Andreu, L. & López-Moreno, Y.E. & Galindo, A. & Moriana, A., 2021. "Identification of water stress conditions in olive trees through frequencies of trunk growth rate," Agricultural Water Management, Elsevier, vol. 247(C).
    3. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    4. Siakou, M. & Bruggeman, A. & Eliades, M. & Zoumides, C. & Djuma, H. & Kyriacou, M.C. & Emmanouilidou, M.G. & Spyros, A. & Manolopoulou, E. & Moriana, A., 2021. "Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Galindo, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2020. "Stem water potential-based regulated deficit irrigation scheduling for olive table trees," Agricultural Water Management, Elsevier, vol. 242(C).
    7. Iglesias, Maria Agustina & Rousseaux, M. Cecilia & Agüero Alcaras, L. Martín & Hamze, Leila & Searles, Peter S., 2023. "Influence of deficit irrigation and warming on plant water status during the late winter and spring in young olive trees," Agricultural Water Management, Elsevier, vol. 275(C).
    8. Monasterio, Romina P. & Banco, Adriana P. & Caderón, Facundo J. & Trentacoste, Eduardo R., 2021. "Effects of pre-harvest deficit irrigation during the oil accumulation period on fruit characteristics, oil yield extraction, and oil quality in olive cv. Genovesa in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 252(C).
    9. Martínez-Gimeno, M.A. & Zahaf, A. & Badal, E. & Paz, S. & Bonet, L. & Pérez-Pérez, J.G., 2022. "Effect of progressive irrigation water reductions on super-high-density olive orchards according to different scarcity scenarios," Agricultural Water Management, Elsevier, vol. 262(C).
    10. Vita Serman, Facundo & Orgaz, Francisco & Starobinsky, Gabriela & Capraro, Flavio & Fereres, Elias, 2021. "Water productivity and net profit of high-density olive orchards in San Juan, Argentina," Agricultural Water Management, Elsevier, vol. 252(C).
    11. Hueso, A. & Camacho, G. & Gómez-del-Campo, M., 2021. "Spring deficit irrigation promotes significant reduction on vegetative growth, flowering, fruit growth and production in hedgerow olive orchards (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 248(C).
    12. Sánchez-Piñero, M. & Martín-Palomo, M.J. & Andreu, L. & Moriana, A. & Corell, M., 2022. "Evaluation of a simplified methodology to estimate the CWSI in olive orchards," Agricultural Water Management, Elsevier, vol. 269(C).
    13. García, J.M. & Hueso, A. & Gómez-del- Campo, M., 2020. "Deficit irrigation during the oil synthesis period affects olive oil quality in high-density orchards (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 230(C).
    14. Casanova, L. & Corell, M. & Suárez, M.P. & Rallo, P. & Martín-Palomo, M.J. & Morales-Sillero, A. & Moriana, A. & Jiménez, M.R., 2019. "Bruising response in ‘Manzanilla de Sevilla’ olives to RDI strategies based on water potential," Agricultural Water Management, Elsevier, vol. 222(C), pages 265-273.
    15. Tito, Richard & Cruz, Rudi & Nina, Alex & Limonchi, Fabian & Puma-Vilca, Beisit L. & Salinas, Norma & Cosio, Eric G., 2024. "Evapotranspiration, carbon dynamics and water use efficiency in a drip-irrigated olive orchard in arid coastal western South America," Agricultural Water Management, Elsevier, vol. 297(C).
    16. Gao, Zhaoquan & Fan, Jiangchuan & Li, Zhiqiang, 2021. "Dynamic simulation water storage of different parts in peach tree under drought stress," Agricultural Water Management, Elsevier, vol. 244(C).
    17. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    18. Martínez-Cob, A. & Faci, J.M., 2010. "Evapotranspiration of an hedge-pruned olive orchard in a semiarid area of NE Spain," Agricultural Water Management, Elsevier, vol. 97(3), pages 410-418, March.
    19. Dabbou, Samia & Chehab, Hechmi & Faten, Brahmi & Dabbou, Sihem & Esposto, Sonia & Selvaggini, Roberto & Taticchi, Agnese & Servili, Maurizio & Montedoro, Gian Francesco & Hammami, Mohamed, 2010. "Effect of three irrigation regimes on Arbequina olive oil produced under Tunisian growing conditions," Agricultural Water Management, Elsevier, vol. 97(5), pages 763-768, May.
    20. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s037837742100651x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.