IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v216y2019icp400-414.html
   My bibliography  Save this article

Effects of applying uniconazole alone or combined with manganese on the photosynthetic efficiency, antioxidant defense system, and yield in wheat in semiarid regions

Author

Listed:
  • Ahmad, Irshad
  • Kamran, Muhammad
  • Yang, Xueni
  • Meng, Xiangping
  • Ali, Shahzad
  • Ahmad, Shakeel
  • Zhang, Xudong
  • Bilegjargal, Bayasgalan
  • Ahmad, Bashir
  • Liu, Tiening
  • Cai, Tie
  • Han, Qingfang

Abstract

In arid and semiarid regions, wheat productivity depends on natural precipitation, however deficit and unpredictable precipitation leads to reduced production. Uniconazole application can significantly reduce the accumulation of reactive oxygen species (ROS) by enhancing the anti-oxidant enzymes activities and improve the wheat production in semiarid regions. The objective of the current study was to test the hypothesis, whether uniconazole applied alone or in combination with manganese could improve the wheat productivity by enhancing the photosynthetic efficiency and antioxidant defense system. Uniconazole was applied as seed soaking at the concentrations of 0 (CK), 15 (SU1), 30 (SU2), and 45 (SU3) mg L–1, and in the second experiment with manganese at the concentrations of 0.06 g L–1 (Mn), 0.06 g L–1 manganese + 15 mg L–1 uniconazole (SMU1), 0.06 g L–1 manganese + 30 mg L–1 uniconazole (SMU2), and 0.06 g L–1 manganese + 45 mg L–1 uniconazole (SMU3), respectively. Uniconazole applied alone or in combination with manganese significantly reduced the ROS accumulation by enhancing the anti-oxidant enzymes activities. Treatments SMU2 and SU2 improved significantly the photosynthetic efficiency, soluble protein content, and leaf area plant–1 and thus increased the grain yield. Treatments SMU2 and SU2 significantly enhanced the anti-oxidant enzymes activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), while reduced the accumulations of MDA, proline, and ROS. The chlorophyll a and b contents, net photosynthetic rate, soluble protein content, and anti-oxidant enzymes activities were significantly negatively correlated with ROS, MDA, and proline contents. Uniconazole application in combination with manganese treatments significantly improved the wheat production. Uniconazole application in combination with manganese at the concentration of 30 mg L–1 and 0.06 g L–1 or uniconazole applied alone at a concentration of 30 mg L–1 significantly enhanced the anti-oxidant defense system and winter wheat production in semiarid regions.

Suggested Citation

  • Ahmad, Irshad & Kamran, Muhammad & Yang, Xueni & Meng, Xiangping & Ali, Shahzad & Ahmad, Shakeel & Zhang, Xudong & Bilegjargal, Bayasgalan & Ahmad, Bashir & Liu, Tiening & Cai, Tie & Han, Qingfang, 2019. "Effects of applying uniconazole alone or combined with manganese on the photosynthetic efficiency, antioxidant defense system, and yield in wheat in semiarid regions," Agricultural Water Management, Elsevier, vol. 216(C), pages 400-414.
  • Handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:400-414
    DOI: 10.1016/j.agwat.2019.02.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418307236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.02.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiao-Yan & Gong, Jia-Dong, 2002. "Effects of different ridge:furrow ratios and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches," Agricultural Water Management, Elsevier, vol. 54(3), pages 243-254, April.
    2. Kang, Shaozhong & Zhang, Lu & Liang, Yinli & Hu, Xiaotao & Cai, Huanjie & Gu, Binjie, 2002. "Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 55(3), pages 203-216, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    3. Su, Ziyou & Zhang, Jinsong & Wu, Wenliang & Cai, Dianxiong & Lv, Junjie & Jiang, Guanghui & Huang, Jian & Gao, Jun & Hartmann, Roger & Gabriels, Donald, 2007. "Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 87(3), pages 307-314, February.
    4. Zhang, Chun & Dong, Zhaoyun & Guo, Qin & Hu, Zhilin & Li, Juan & Wei, Ting & Ding, Ruixia & Cai, Tie & Ren, Xiaolong & Han, Qingfang & Zhang, Peng & Jia, Zhikuan, 2022. "Ridge–furrow rainwater harvesting combined with supplementary irrigation: Water-saving and yield-maintaining mode for winter wheat in a semiarid region based on 8-year in-situ experiment," Agricultural Water Management, Elsevier, vol. 259(C).
    5. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Fangyuan, Huang & Daur, Ihsanullah & Wei, Ting & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "The ridge furrow cropping technique indirectly improves seed filling endogenous hormonal changes and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 138-148.
    6. Abdul Ghaffar Khan & Muhammad Imran & Anwar-ul-Hassan Khan & Ali Fares & Jiří Šimůnek & Tanveer Ul-Haq & Abdulaziz Abdullah Alsahli & Mohammed Nasser Alyemeni & Shafaqat Ali, 2021. "Performance of Spring and Summer-Sown Maize under Different Irrigation Strategies in Pakistan," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    7. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    8. Zhang, Buchong & Li, Feng-Min & Huang, Gaobao & Cheng, Zi-Yong & Zhang, Yanhong, 2006. "Yield performance of spring wheat improved by regulated deficit irrigation in an arid area," Agricultural Water Management, Elsevier, vol. 79(1), pages 28-42, January.
    9. Li-fang Wang & Juan Chen & Zhou-ping Shangguan, 2015. "Yield Responses of Wheat to Mulching Practices in Dryland Farming on the Loess Plateau," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    10. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    11. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    12. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    13. Yan Shan & Mingbin Huang & Paul Harris & Lianhai Wu, 2021. "A Sensitivity Analysis of the SPACSYS Model," Agriculture, MDPI, vol. 11(7), pages 1-30, July.
    14. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    15. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    16. Vedran Krevh & Lana Filipović & Jasmina Defterdarović & Igor Bogunović & Yonggen Zhang & Zoran Kovač & Andrew Barton & Vilim Filipović, 2023. "Investigating Near-Surface Hydrologic Connectivity in a Grass-Covered Inter-Row Area of a Hillslope Vineyard Using Field Monitoring and Numerical Simulations," Land, MDPI, vol. 12(5), pages 1-18, May.
    17. Zhang, Guangxin & Dai, Rongcheng & Ma, Wenzhuo & Fan, Hengzhi & Meng, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Optimizing the ridge–furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China," Agricultural Water Management, Elsevier, vol. 262(C).
    18. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    19. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    20. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:400-414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.