IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v199y2018icp157-174.html
   My bibliography  Save this article

Advances in designing drip irrigation laterals

Author

Listed:
  • Baiamonte, Giorgio

Abstract

It is known that using paired laterals, in which two distribution pipes extend in opposite directions from a common manifold, contribute to increasing water use efficiency (WUE). Recently, an analytical procedure to optimally design paired drip laterals on uniform slopes was proposed. More recently, this design procedure was simplified by deriving simple explicit relationships, as a function of 16 calibration constants, with relative errors that were less than 2%. In this paper, further simple design relationships are derived that require only 3 calibration constants, thus more readily obtainable results are produced and the influence of the flow rate and diameter exponents of resistance equation are made more evident. Simple monomial relationships were also extended for the cases in which the lateral is laid on flat fields, on upward fields, and also considering layouts in which the manifold is located at the boundary, instead of inside, of the irrigation unit. For the five considered layouts, evaluations of the effects of design choices in terms of energy saving and comparisons between optimal lateral lengths, are carried out. Finally, simple linear relationships linking lateral pressure head tolerance (δ), coefficient of variation of pressure heads (CV) and emission uniformity coefficient of Keller and Karmeli (EU) are presented. Results showed that for any design solutions associated with the considered layouts and for δ < 0.1, the proposed procedure allows optimal design of the lateral, optimizing WUE, assuring low values of pressure head variability (CV < 6.1%) and high values of emission uniformity coefficient (EU > 95%).

Suggested Citation

  • Baiamonte, Giorgio, 2018. "Advances in designing drip irrigation laterals," Agricultural Water Management, Elsevier, vol. 199(C), pages 157-174.
  • Handle: RePEc:eee:agiwat:v:199:y:2018:i:c:p:157-174
    DOI: 10.1016/j.agwat.2017.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417304079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baiamonte, Giorgio, 2017. "Design of concave and convex paired sloped drip laterals," Agricultural Water Management, Elsevier, vol. 191(C), pages 173-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni Gao & Yan Mo & Jiandong Wang & Luhua Yang & Shihong Gong, 2022. "Effects of Flow Path Geometrical Parameters on the Hydraulic Performance of Variable Flow Emitters at the Conventional Water Supply Stage," Agriculture, MDPI, vol. 12(10), pages 1-17, September.
    2. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    3. Lin, Xiaomin & Wang, Zhen & Li, Jiusheng, 2022. "Spatial variability of salt content caused by nonuniform distribution of irrigation and soil properties in drip irrigation subunits with different lateral layouts under arid environments," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Wang, Ce & Ye, Jinyang & Zhai, Yaming & Kurexi, Wuerkaixi & Xing, Dong & Feng, Genxiang & Zhang, Qun & Zhang, Zhanyu, 2023. "Dynamics of Moistube discharge, soil-water redistribution and wetting morphology in response to regulated working pressure heads," Agricultural Water Management, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Rashid & Saif Haider & Muhammad Umer Masood & Chaitanya B. Pande & Abebe Debele Tolche & Fahad Alshehri & Romulus Costache & Ismail Elkhrachy, 2023. "Sustainable Water Management for Small Farmers with Center-Pivot Irrigation: A Hydraulic and Structural Design Perspective," Sustainability, MDPI, vol. 15(23), pages 1-29, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:199:y:2018:i:c:p:157-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.