IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v170y2016icp167-175.html
   My bibliography  Save this article

Effects of pot-in-pot production system on water consumption, stem diameter variations and photochemical efficiency of spindle tree irrigated with saline water

Author

Listed:
  • Miralles, J.
  • Franco, J.A.
  • Sánchez-Blanco, M.J.
  • Bañón, S.

Abstract

Our aim was to determine whether the pot-in-pot (PIP) system can improve the salinity tolerance of spindle tree (Euonymus japonicus) compared to above-ground pot (AGP) systems in terms of water use efficiency (WUE), irrigation water evapotranspired (IWET), stem diameter variations and photochemical efficiency. The PIP system involves burying a “holder pot” in the ground up to the rim. A second, “cultivation pot” containing the growing plant is placed inside the holder pot, while AGP is the traditional above-ground pot production system. In the present experiment, the cultivation pots in both systems contained a mixture of white peat, coconut fibre and perlite (40/40/20, v/v/v). The following treatments were studied: AGP and PIP with control irrigation using water of 1.76dSm−1 (AGPc and PIPc); and AGP and PIP using saline irrigation water of 9.04dSm−1 (AGPs and PIPs). A soil moisture sensor-controlled irrigation system was used to irrigate all the treatments when AGPc reached a substrate volume water content (θ) of around 0.34m3m−3. The θ of the saline treatments increased as the experiment progressed, particularly in PIP. The leaching fraction was 33% in AGPc, 41% in PIPc, 43% in AGPs and 54% in PIPs. PIPs produced the lowest amount of IWET (9.94L) and AGPc the highest (13.20L). Salinity reduced the plant dry weight (DW) in AGP (5.39g), but not in PIP (10.2g). AGPs led to the lowest WUE (0.52gDWL−1), while PIPs led to 1.23gDWL−1. Daily IWET per plant was related with the amount of photosynthetic light received each day (daily light integral, DLI) and age in the control treatments, while, under salinity, IWET was only related with DLI. Stem diameter growth was greater in PIPc (1278μm) and lower in AGPs (60μm). The discrepancy between the photosystem II efficiency and photosynthesis rate in AGPs pointed to an increasing rate of photorespiration.

Suggested Citation

  • Miralles, J. & Franco, J.A. & Sánchez-Blanco, M.J. & Bañón, S., 2016. "Effects of pot-in-pot production system on water consumption, stem diameter variations and photochemical efficiency of spindle tree irrigated with saline water," Agricultural Water Management, Elsevier, vol. 170(C), pages 167-175.
  • Handle: RePEc:eee:agiwat:v:170:y:2016:i:c:p:167-175
    DOI: 10.1016/j.agwat.2016.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416300361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alarcon, J.J. & Ortuno, M.F. & Nicolas, E. & Navarro, A. & Torrecillas, A., 2006. "Improving water-use efficiency of young lemon trees by shading with aluminised-plastic nets," Agricultural Water Management, Elsevier, vol. 82(3), pages 387-398, April.
    2. Rubio, J.S. & Rubio, F. & Martínez, V. & García-Sánchez, F., 2010. "Amelioration of salt stress by irrigation management in pepper plants grown in coconut coir dust," Agricultural Water Management, Elsevier, vol. 97(10), pages 1695-1702, October.
    3. Flowers, T.J. & Ragab, R. & Malash, N. & Gawad, G. Abdel & Cuartero, J. & Arslan, A., 2005. "Sustainable strategies for irrigation in salt-prone Mediterranean: SALTMED," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 3-14, September.
    4. Ortuño, M.F. & Conejero, W. & Moreno, F. & Moriana, A. & Intrigliolo, D.S. & Biel, C. & Mellisho, C.D. & Pérez-Pastor, A. & Domingo, R. & Ruiz-Sánchez, M.C. & Casadesus, J. & Bonany, J. & Torrecillas,, 2010. "Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives," Agricultural Water Management, Elsevier, vol. 97(1), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De la Rosa, J.M. & Domingo, R. & Gómez-Montiel, J. & Pérez-Pastor, A., 2015. "Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees," Agricultural Water Management, Elsevier, vol. 152(C), pages 207-216.
    2. Abdelfatah, Ashraf & Aranda, Xavier & Savé, Robert & de Herralde, Felicidad & Biel, Carmen, 2013. "Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to water stress cycles in a greenhouse," Agricultural Water Management, Elsevier, vol. 118(C), pages 150-158.
    3. Escarabajal-Henarejos, D. & Molina-Martínez, J.M. & Fernández-Pacheco, D.G. & Cavas-Martínez, F. & García-Mateos, G., 2015. "Digital photography applied to irrigation management of Little Gem lettuce," Agricultural Water Management, Elsevier, vol. 151(C), pages 148-157.
    4. Chauhdary, Junaid Nawaz & Bakhsh, Allah & Engel, Bernard A. & Ragab, Ragab, 2019. "Improving corn production by adopting efficient fertigation practices: Experimental and modeling approach," Agricultural Water Management, Elsevier, vol. 221(C), pages 449-461.
    5. Pérez-López, D. & Pérez-Rodríguez, J.M. & Moreno, M.M. & Prieto, M.H. & Ramírez-Santa-Pau, M. & Gijón, M.C. & Guerrero, J. & Moriana, A., 2013. "Influence of different cultivars–locations on maximum daily shrinkage indicators: Limits to the reference baseline approach," Agricultural Water Management, Elsevier, vol. 127(C), pages 31-39.
    6. Girón, I.F. & Corell, M. & Martín-Palomo, M.J. & Galindo, A. & Torrecillas, A. & Moreno, F. & Moriana, A., 2015. "Feasibility of trunk diameter fluctuations in the scheduling of regulated deficit irrigation for table olive trees without reference trees," Agricultural Water Management, Elsevier, vol. 161(C), pages 114-126.
    7. Fernández, J.E. & Rodriguez-Dominguez, C.M. & Perez-Martin, A. & Zimmermann, U. & Rüger, S. & Martín-Palomo, M.J. & Torres-Ruiz, J.M. & Cuevas, M.V. & Sann, C. & Ehrenberger, W. & Diaz-Espejo, A., 2011. "Online-monitoring of tree water stress in a hedgerow olive orchard using the leaf patch clamp pressure probe," Agricultural Water Management, Elsevier, vol. 100(1), pages 25-35.
    8. Pedrero, Francisco & Allende, Ana & Gil, María I. & Alarcón, Juan J., 2012. "Soil chemical properties, leaf mineral status and crop production in a lemon tree orchard irrigated with two types of wastewater," Agricultural Water Management, Elsevier, vol. 109(C), pages 54-60.
    9. Vera-Repullo, J.A. & Ruiz-Peñalver, L. & Jiménez-Buendía, M. & Rosillo, J.J. & Molina-Martínez, J.M., 2015. "Software for the automatic control of irrigation using weighing-drainage lysimeters," Agricultural Water Management, Elsevier, vol. 151(C), pages 4-12.
    10. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    11. Temnani, Abdelmalek & Berríos, Pablo & Zapata-García, Susana & Pérez-Pastor, Alejandro, 2023. "Deficit irrigation strategies of flat peach trees under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 287(C).
    12. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
    13. Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).
    14. Chauhdary, Junaid Nawaz & Bakhsh, Allah & Ragab, Ragab & Khaliq, Abdul & Engel, Bernard A. & Rizwan, Muhammad & Shahid, Muhammad Adnan & Nawaz, Qamar, 2020. "Modeling corn growth and root zone salinity dynamics to improve irrigation and fertigation management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 230(C).
    15. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    16. Corell, M. & Pérez-López, D. & Martín-Palomo, M.J. & Centeno, A. & Girón, I. & Galindo, A. & Moreno, M.M. & Moreno, C. & Memmi, H. & Torrecillas, A. & Moreno, F. & Moriana, A., 2016. "Comparison of the water potential baseline in different locations. Usefulness for irrigation scheduling of olive orchards," Agricultural Water Management, Elsevier, vol. 177(C), pages 308-316.
    17. Conejero, W. & Ortuño, M.F. & Mellisho, C.D. & Torrecillas, A., 2010. "Influence of crop load on maximum daily trunk shrinkage reference equations for irrigation scheduling of early maturing peach trees," Agricultural Water Management, Elsevier, vol. 97(2), pages 333-338, February.
    18. Moriana, A. & Moreno, F. & Girón, I.F. & Conejero, W. & Ortuño, M.F. & Morales, D. & Corell, M. & Torrecillas, A., 2011. "Seasonal changes of maximum daily shrinkage reference equations for irrigation scheduling in olive trees: Influence of fruit load," Agricultural Water Management, Elsevier, vol. 99(1), pages 121-127.
    19. Conesa, M.R. & Torres, R. & Domingo, R. & Navarro, H. & Soto, F. & Pérez-Pastor, A., 2016. "Maximum daily trunk shrinkage and stem water potential reference equations for irrigation scheduling in table grapes," Agricultural Water Management, Elsevier, vol. 172(C), pages 51-61.
    20. Corell, M. & Martín-Palomo, M.J. & Pérez-López, D. & Centeno, A. & Girón, I. & Moreno, F. & Torrecillas, A. & Moriana, A., 2017. "Approach for using trunk growth rate (TGR) in the irrigation scheduling of table olive orchards," Agricultural Water Management, Elsevier, vol. 192(C), pages 12-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:170:y:2016:i:c:p:167-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.