IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v150y2015icp57-66.html
   My bibliography  Save this article

Saffron response to irrigation water salinity, cow manure and planting method

Author

Listed:
  • Yarami, Najmeh
  • Sepaskhah, Ali Reza

Abstract

Saffron (Crocus sativus L.) is the most strategic and expensive crop in the Islamic Republic of Iran. Shortage and salinity of irrigation water are two major constraints that influence saffron production in arid and semi-arid regions. The objective of the present study is to investigate the effects of irrigation water salinity, cow manure levels and different planting methods as strategies for coping with the impacts of salinity on yield and growth of saffron. Experimental design was a split–split plot arrangement in randomized complete block design with salinity levels of irrigation water as the main plot, cow manure levels as the subplot and planting method as the sub-subplot in three replications. The salinity levels consisted of 0.45 (well water, S1), 1.0 (S2), 2.0 (S3), and 3.0 (S4) dSm−1. The fertilizer levels were 30 (F1) and 60 (F2) Mgha−1 of cow manure for the first growing season and 15 and 30Mgha−1 for the second growing seasons. The planting methods were basin (P1) and in-furrow (P2). Saffron (stile/stigmas) yield declined by about 38% by increasing water salinity to highest level. Saffron yield in the in-furrow planting method was higher than 3.5 times that in the basin planting, which indicates that the in-furrow planting method can be recommended as a highly efficient method for saffron planting, by providing a probably appropriate soil temperature condition for corms growth. Higher cow manure application (60Mgha−1) increased saffron yield by about 23%, due to improving soil fertility and supplying the nutrient requirements of plant. Maximum threshold ECe for saffron yield was 1.1dSm−1 that occurred under in-furrow planting method and cow manure application rate of 60Mgha−1 and saffron yield reduction coefficient was on average 40% per unit soil salinity increase. Finally, saffron can be considered as a salt-sensitive crop. High salt sensitivity of saffron could be remediated by using the in-furrow planting method and cow manure application.

Suggested Citation

  • Yarami, Najmeh & Sepaskhah, Ali Reza, 2015. "Saffron response to irrigation water salinity, cow manure and planting method," Agricultural Water Management, Elsevier, vol. 150(C), pages 57-66.
  • Handle: RePEc:eee:agiwat:v:150:y:2015:i:c:p:57-66
    DOI: 10.1016/j.agwat.2014.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414003825
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2004. "Comparison of corn yield response to plant water stress caused by salinity and by drought," Agricultural Water Management, Elsevier, vol. 65(2), pages 95-101, March.
    2. Oster, J. D., 1994. "Irrigation with poor quality water," Agricultural Water Management, Elsevier, vol. 25(3), pages 271-297, July.
    3. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2003. "Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods," Agricultural Water Management, Elsevier, vol. 62(1), pages 37-66, August.
    4. Shalhevet, Joseph, 1994. "Using water of marginal quality for crop production: major issues," Agricultural Water Management, Elsevier, vol. 25(3), pages 233-269, July.
    5. Ould Ahmed, B.A. & Inoue, M. & Moritani, S., 2010. "Effect of saline water irrigation and manure application on the available water content, soil salinity, and growth of wheat," Agricultural Water Management, Elsevier, vol. 97(1), pages 165-170, January.
    6. Zhang, Jiyang & Sun, Jingsheng & Duan, Aiwang & Wang, Jinglei & Shen, Xiaojun & Liu, Xiaofei, 2007. "Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 41-47, August.
    7. Li, Quanqi & Chen, Yuhai & Liu, Mengyu & Zhou, Xunbo & Yu, Songlie & Dong, Baodi, 2008. "Effects of irrigation and planting patterns on radiation use efficiency and yield of winter wheat in North China," Agricultural Water Management, Elsevier, vol. 95(4), pages 469-476, April.
    8. Quanqi, Li & Xunbo, Zhou & Yuhai, Chen & Songlie, Yu, 2012. "Water consumption characteristics of winter wheat grown using different planting patterns and deficit irrigation regime," Agricultural Water Management, Elsevier, vol. 105(C), pages 8-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    2. Wang, Qing & Men, Lizhi & Gao, Lihong & Tian, Yongqiang, 2017. "Effect of grafting and gypsum application on cucumber (Cucumis sativus L.) growth under saline water irrigation," Agricultural Water Management, Elsevier, vol. 188(C), pages 79-90.
    3. Shahrokhnia, Mohammad Hossein & Sepaskhah, Ali Reza, 2016. "Effects of irrigation strategies, planting methods and nitrogen fertilization on yield, water and nitrogen efficiencies of safflower," Agricultural Water Management, Elsevier, vol. 172(C), pages 18-30.
    4. Seyedeh Elahe Hashemi & Shahab Madahhosseini & Hadi Pirasteh-Anosheh & Ebrahim Sedaghati & Marco Race, 2022. "The Role of Nitrogen in Inducing Salt Stress Tolerance in Crocus sativus L.: Assessment Based on Plant Growth and Ions Distribution in Leaves," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    5. Mosaffa, Hamid Reza & Sepaskhah, Ali Reza, 2019. "Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods," Agricultural Water Management, Elsevier, vol. 216(C), pages 444-456.
    6. Mehrabi, Fatemeh & Sepaskhah, Ali Reza, 2019. "Partial root zone drying irrigation, planting methods and nitrogen fertilization influence on physiologic and agronomic parameters of winter wheat," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    7. Yarami, Najmeh & Sepaskhah, Ali Reza, 2015. "Physiological growth and gas exchange response of saffron (Crocus sativus L.) to irrigation water salinity, manure application and planting method," Agricultural Water Management, Elsevier, vol. 154(C), pages 43-51.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ould Ahmed, B.A. & Inoue, M. & Moritani, S., 2010. "Effect of saline water irrigation and manure application on the available water content, soil salinity, and growth of wheat," Agricultural Water Management, Elsevier, vol. 97(1), pages 165-170, January.
    2. Ahmed, B.A. Ould & Yamamoto, T. & Rasiah, V. & Inoue, M. & Anyoji, H., 2007. "The impact of saline water irrigation management options in a dune sand on available soil water and its salinity," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 63-72, March.
    3. Katerji, N. & Mastrorilli, M. & Lahmar, F., 2011. "FAO-56 methodology for the stress coefficient evaluation under saline environment conditions: Validation on potato and broad bean crops," Agricultural Water Management, Elsevier, vol. 98(4), pages 588-596, February.
    4. Yarami, Najmeh & Sepaskhah, Ali Reza, 2015. "Physiological growth and gas exchange response of saffron (Crocus sativus L.) to irrigation water salinity, manure application and planting method," Agricultural Water Management, Elsevier, vol. 154(C), pages 43-51.
    5. Wan, Shuqin & Kang, Yaohu & Wang, Dan & Liu, Shi-ping, 2010. "Effect of saline water on cucumber (Cucumis sativus L.) yield and water use under drip irrigation in North China," Agricultural Water Management, Elsevier, vol. 98(1), pages 105-113, December.
    6. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2004. "Comparison of corn yield response to plant water stress caused by salinity and by drought," Agricultural Water Management, Elsevier, vol. 65(2), pages 95-101, March.
    7. Q.Q. Li & X.B. Zhou & Y.H. Chen & S.L. Yu, 2010. "Grain yield and quality of winter wheat in different planting patterns under deficit irrigation regimes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(10), pages 482-487.
    8. Tedeschi, A. & Lavini, A. & Riccardi, M. & Pulvento, C. & d'Andria, R., 2011. "Melon crops (Cucumis melo L., cv. Tendral) grown in a mediterranean environment under saline-sodic conditions: Part I. Yield and quality," Agricultural Water Management, Elsevier, vol. 98(9), pages 1329-1338, July.
    9. Mosaffa, Hamid Reza & Sepaskhah, Ali Reza, 2019. "Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods," Agricultural Water Management, Elsevier, vol. 216(C), pages 444-456.
    10. Dandan, Zhao & Jiayin, Shen & Kun, Lang & Quanru, Liu & Quanqi, Li, 2013. "Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 118(C), pages 87-92.
    11. Kang, Yaohu & Chen, Ming & Wan, Shuqin, 2010. "Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain," Agricultural Water Management, Elsevier, vol. 97(9), pages 1303-1309, September.
    12. Shahrokhnia, Mohammad Hossein & Sepaskhah, Ali Reza, 2016. "Effects of irrigation strategies, planting methods and nitrogen fertilization on yield, water and nitrogen efficiencies of safflower," Agricultural Water Management, Elsevier, vol. 172(C), pages 18-30.
    13. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Sohail, Amir & Manzoor, & Arif, Muhammad & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "The ridge-furrow system combined with supplemental irrigation strategies to improves radiation use efficiency and winter wheat productivity in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 76-86.
    14. Murtaza, G. & Ghafoor, A. & Qadir, M., 2006. "Irrigation and soil management strategies for using saline-sodic water in a cotton-wheat rotation," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 98-114, March.
    15. Bassil, Elias S. & Kaffka, Stephen R., 2002. "Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: II. Crop response to salinity," Agricultural Water Management, Elsevier, vol. 54(1), pages 81-92, March.
    16. Bassil, Elias S. & Kaffka, Stephen R., 2002. "Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: I. Consumptive water use," Agricultural Water Management, Elsevier, vol. 54(1), pages 67-80, March.
    17. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin, 2019. "Response of tall fescue to the reclamation of severely saline coastal soil using treated effluent in Bohai Bay," Agricultural Water Management, Elsevier, vol. 218(C), pages 203-210.
    18. Quanqi, Li & Xunbo, Zhou & Yuhai, Chen & Songlie, Yu, 2012. "Water consumption characteristics of winter wheat grown using different planting patterns and deficit irrigation regime," Agricultural Water Management, Elsevier, vol. 105(C), pages 8-12.
    19. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin & Xu, Jiachong, 2019. "Effect of the micro-sprinkler irrigation method with treated effluent on soil physical and chemical properties in sea reclamation land," Agricultural Water Management, Elsevier, vol. 213(C), pages 222-230.
    20. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin, 2020. "Management of sea reclamation land using drip irrigation with treated effluent and its effect on Rosa chinensis," Agricultural Water Management, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:150:y:2015:i:c:p:57-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.