IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v223y2025ics0308521x2400341x.html
   My bibliography  Save this article

Use of models for identification of nitrogen fertilization strategies for filling feeding gaps of cow-calf systems in the Flooding Pampas of Argentina

Author

Listed:
  • Berger, Horacio
  • Vogeler, Iris
  • Machado, Claudio F.

Abstract

Nitrogen availability is the primary limitation for the growth of tall fescue, Argentina's most widely cultivated cool-season pasture. Significant yield gaps exist in fescue pastures on commercial farms, where average annual yields are around 5 t/ha, compared to a potential yield of 10 to 15 t/ha. Nitrogen fertilization remains uncommon among cow-calf producers, highlighting the need for a deeper understanding of the complex interactions between nitrogen fertilizer management, stocking rate, and grazing management at the whole-farm level. Considering annual and inter-annual variations in pasture growth could enable regional beef producers to make more informed decisions, improving pasture yield potential, utilization, and overall farm profitability.

Suggested Citation

  • Berger, Horacio & Vogeler, Iris & Machado, Claudio F., 2025. "Use of models for identification of nitrogen fertilization strategies for filling feeding gaps of cow-calf systems in the Flooding Pampas of Argentina," Agricultural Systems, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:agisys:v:223:y:2025:i:c:s0308521x2400341x
    DOI: 10.1016/j.agsy.2024.104191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X2400341X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2024.104191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chapman, D.F. & Kenny, S.N. & Beca, D. & Johnson, I.R., 2008. "Pasture and forage crop systems for non-irrigated dairy farms in southern Australia. 2. Inter-annual variation in forage supply, and business risk," Agricultural Systems, Elsevier, vol. 97(3), pages 126-138, June.
    2. Cacho, O. J. & Finlayson, J. D. & Bywater, A. C., 1995. "A simulation model of grazing sheep: II. Whole farm model," Agricultural Systems, Elsevier, vol. 48(1), pages 27-50.
    3. Pacín, Fernando & Oesterheld, Martín, 2015. "Closing the technological gap of animal and crop production through technical assistance," Agricultural Systems, Elsevier, vol. 137(C), pages 101-107.
    4. Pacín, Fernando & Oesterheld, Martín, 2014. "In-farm diversity stabilizes return on capital in Argentine agro-ecosystems," Agricultural Systems, Elsevier, vol. 124(C), pages 51-59.
    5. Abmael da Silva Cardoso & Rondineli Pavezzi Barbero & Eliéder Prates Romanzini & Ronyatta Weich Teobaldo & Fernando Ongaratto & Marcia Helena Machado da Rocha Fernandes & Ana Cláudia Ruggieri & Ricard, 2020. "Intensification: A Key Strategy to Achieve Great Animal and Environmental Beef Cattle Production Sustainability in Brachiaria Grasslands," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    6. Arrieta, Ezequiel M. & Cabrol, Diego A. & Cuchietti, Anibal & González, Alejandro D., 2020. "Biomass consumption and environmental footprints of beef cattle production in Argentina," Agricultural Systems, Elsevier, vol. 185(C).
    7. Bilotto, Franco & Vibart, Ronaldo & Wall, Andrew & Machado, Claudio F., 2021. "Estimation of the inter-annual marginal value of additional feed and its replacement cost for beef cattle systems in the Flooding Pampas of Argentina," Agricultural Systems, Elsevier, vol. 187(C).
    8. Berger, Horacio & Bilotto, Franco & Bell, Lindsay W. & Machado, Claudio F., 2017. "Feedbase intervention in a cow-calf system in the flooding pampas of Argentina: 2. Estimation of the marginal value of additional feed," Agricultural Systems, Elsevier, vol. 158(C), pages 68-77.
    9. Stirling, Sofía & Fariña, Santiago & Pacheco, David & Vibart, Ronaldo, 2021. "Whole-farm modelling of grazing dairy systems in Uruguay," Agricultural Systems, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilotto, Franco & Recavarren, Paulo & Vibart, Ronaldo & Machado, Claudio F., 2019. "Backgrounding strategy effects on farm productivity, profitability and greenhouse gas emissions of cow-calf systems in the Flooding Pampas of Argentina," Agricultural Systems, Elsevier, vol. 176(C).
    2. Catalina Fernández Rosso & Franco Bilotto & Andrea Lauric & Gerónimo A. De Leo & Carlos Torres Carbonell & Mauricio A. Arroqui & Claus G. Sørensen & Claudio F. Machado, 2021. "An innovation path in Argentinean cow–calf operations: Insights from participatory farm system modelling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 38(4), pages 488-502, August.
    3. Bilotto, Franco & Vibart, Ronaldo & Wall, Andrew & Machado, Claudio F., 2021. "Estimation of the inter-annual marginal value of additional feed and its replacement cost for beef cattle systems in the Flooding Pampas of Argentina," Agricultural Systems, Elsevier, vol. 187(C).
    4. Berger, Horacio & Bilotto, Franco & Bell, Lindsay W. & Machado, Claudio F., 2017. "Feedbase intervention in a cow-calf system in the flooding pampas of Argentina: 2. Estimation of the marginal value of additional feed," Agricultural Systems, Elsevier, vol. 158(C), pages 68-77.
    5. André Pastori D’Aurea & Abmael da Silva Cardoso & Yuri Santa Rosa Guimarães & Lauriston Bertelli Fernandes & Luis Eduardo Ferreira & Ricardo Andrade Reis, 2021. "Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management," Sustainability, MDPI, vol. 13(13), pages 1-9, June.
    6. Harkness, Caroline & Areal, Francisco J. & Semenov, Mikhail A. & Senapati, Nimai & Shield, Ian F. & Bishop, Jacob, 2023. "Towards stability of food production and farm income in a variable climate," Ecological Economics, Elsevier, vol. 204(PA).
    7. Meot, Alain & Hubert, Bernard & Lasseur, Jacques, 2003. "Organisation of the pastoral territory and grazing management: joint modelling of grazing management practices and plant cover dynamics," Agricultural Systems, Elsevier, vol. 76(1), pages 115-139, April.
    8. González-Quintero, Ricardo & van Wijk, Mark T. & Ruden, Alejandro & Gómez, Manuel & Pantevez, Heiber & Castro-Llanos, Fabio & Notenbaert, An & Arango, Jacobo, 2022. "Yield gap analysis to identify attainable milk and meat productivities and the potential for greenhouse gas emissions mitigation in cattle systems of Colombia," Agricultural Systems, Elsevier, vol. 195(C).
    9. Martin, G. & Duru, M. & Schellberg, J. & Ewert, F., 2012. "Simulations of plant productivity are affected by modelling approaches of farm management," Agricultural Systems, Elsevier, vol. 109(C), pages 25-34.
    10. Komarek, Adam M. & De Pinto, Alessandro & Smith, Vincent H., 2020. "A review of types of risks in agriculture: What we know and what we need to know," Agricultural Systems, Elsevier, vol. 178(C).
    11. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    12. S., Sujatha & Bhat, Ravi, 2015. "Resource use and benefits of mixed farming approach in arecanut ecosystem in India," Agricultural Systems, Elsevier, vol. 141(C), pages 126-137.
    13. Behrendt, Karl & Cacho, Oscar & Scott, James M. & Jones, Randall, 2016. "Using seasonal stochastic dynamic programming to identify optimal management decisions that achieve maximum economic sustainable yields from grasslands under climate risk," Agricultural Systems, Elsevier, vol. 145(C), pages 13-23.
    14. Gicheha, M.G. & Edwards, G.R. & Bell, S.T. & Burtt, E.S. & Bywater, A.C., 2014. "Embedded risk management in dryland sheep systems II. Risk analysis," Agricultural Systems, Elsevier, vol. 124(C), pages 1-11.
    15. Bohan, A. & Shalloo, L. & Malcolm, B. & Ho, C.K.M. & Creighton, P. & Boland, T.M. & McHugh, N., 2016. "Description and validation of the Teagasc Lamb Production Model," Agricultural Systems, Elsevier, vol. 148(C), pages 124-134.
    16. Harkness, Caroline & Areal, Francisco J. & Semenov, Mikhail A. & Senapati, Nimai & Shield, Ian F. & Bishop, Jacob, 2021. "Stability of farm income: The role of agricultural diversity and agri-environment scheme payments," Agricultural Systems, Elsevier, vol. 187(C).
    17. Pacín, Fernando & Oesterheld, Martín, 2015. "Closing the technological gap of animal and crop production through technical assistance," Agricultural Systems, Elsevier, vol. 137(C), pages 101-107.
    18. World Bank, 2024. "Towards a More Competitive, Inclusive, and Resilient Agrifood Sector in Argentina," World Bank Publications - Reports 41383, The World Bank Group.
    19. Matthew J. Bell & Brendan R. Cullen & Ian R. Johnson & Richard J. Eckard, 2012. "Modelling Nitrogen Losses from Sheep Grazing Systems with Different Spatial Distributions of Excreta," Agriculture, MDPI, vol. 2(4), pages 1-13, September.
    20. Paramesh, Venkatesh & Parajuli, Ranjan & Chakurkar, E.B. & Sreekanth, G.B. & Kumar, H.B. Chetan & Gokuldas, P.P. & Mahajan, Gopal R. & Manohara, K.K. & Viswanatha, Reddy K. & Ravisankar, N., 2019. "Sustainability, energy budgeting, and life cycle assessment of crop-dairy-fish-poultry mixed farming system for coastal lowlands under humid tropic condition of India," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:223:y:2025:i:c:s0308521x2400341x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.