IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v135y2015icp1-9.html
   My bibliography  Save this article

Managing greenhouse gas emissions in two major dairy regions of New Zealand: A system-level evaluation

Author

Listed:
  • Adler, Alfredo A.
  • Doole, Graeme J.
  • Romera, Alvaro J.
  • Beukes, Pierre C.

Abstract

New Zealand dairy farms are responsible for a large proportion of this nation's greenhouse gas emissions (GHG-e), arising mainly from enteric methane and urinary nitrogen deposition on pasture. De-intensification and the use of specific mitigation strategies can reduce GHG-e from dairy farms, but are generally costly. In this study, a farm-level model is used to analyse the cost of GHG-e mitigation strategies in medium- (10–20% imported feed) and high-input (20–40% imported feed) systems in the two major dairy regions of New Zealand (Waikato and Canterbury). Production intensity is measured solely in terms of feed importation, in accordance with standard practice in this nation. The focus of the study is to assess the cost-effectiveness of a variety of de-intensification and mitigation strategies aimed at reducing the negative impact of emissions constraints (reductions of 10, 20, and 30%) on farm profit. De-intensification options include changes in stocking rate, nitrogen fertiliser application, and supplement quantity. Mitigation options include feeding crops, improved reproductive management, use of feed pads, use of stand-off pads, and use of nitrification inhibitors. The model showed that a combination of reduced N fertiliser application and lower stocking rates were the larger changes experienced in the systems studied when GHG-e reductions were introduced. Nitrification inhibitors were only useful for mitigation once the GHG-e reductions required were so stringent that their cost was warranted to offset the significant costs associated with de-intensification in the high-input systems. Stand-off and feed pads were too expensive to warrant their use when not already available. Overall, de-intensification of the farming system proved to be more profitable than the use of specific mitigation practices when reduction of GHG-e was required. Maintaining a given intake of imported feed reduces the degree to which de-intensification may be used for abatement, thus inflating the cost of mitigation strategies on high-input farms.

Suggested Citation

  • Adler, Alfredo A. & Doole, Graeme J. & Romera, Alvaro J. & Beukes, Pierre C., 2015. "Managing greenhouse gas emissions in two major dairy regions of New Zealand: A system-level evaluation," Agricultural Systems, Elsevier, vol. 135(C), pages 1-9.
  • Handle: RePEc:eee:agisys:v:135:y:2015:i:c:p:1-9
    DOI: 10.1016/j.agsy.2014.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X14001620
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2014.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dumbrell, Nikki P. & Kragt, Marit E. & Biggs, Jody & Meier, Elizabeth & Thorburn, Peter, 2015. "Climate change abatement and farm profitability analyses across agricultural environments," Working Papers 225674, University of Western Australia, School of Agricultural and Resource Economics.
    2. Dowson, Oscar & Philpott, Andy & Mason, Andrew & Downward, Anthony, 2019. "A multi-stage stochastic optimization model of a pastoral dairy farm," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1077-1089.
    3. Krimly, Tatjana & Angenendt, Elisabeth & Bahrs, Enno & Dabbert, Stephan, 2016. "Global warming potential and abatement costs of different peatland management options: A case study for the Pre-alpine Hill and Moorland in Germany," Agricultural Systems, Elsevier, vol. 145(C), pages 1-12.
    4. van der Weerden, T.J. & Laurenson, S. & Vogeler, I. & Beukes, P.C. & Thomas, S.M. & Rees, R.M. & Topp, C.F.E. & Lanigan, G. & de Klein, C.A.M., 2017. "Mitigating nitrous oxide and manure-derived methane emissions by removing cows in response to wet soil conditions," Agricultural Systems, Elsevier, vol. 156(C), pages 126-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:135:y:2015:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.