IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v7y2004i1p168-190.html
   My bibliography  Save this article

Asymptotic inference results for multivariate long-memory processes

Author

Listed:
  • Juan J. Dolado
  • Francesc Marmol

Abstract

In this paper, we extend the well-known Sims, Stock and Watson (SSW) (Sims et al. 1990; Econometrica 56, 113-44), analysis on estimation and testing in vector autoregressive process (VARs) with integer unit roots and deterministic components to a more general set-up where non-stationary fractionally integrated (NFI) processes are considered. In particular, we focus on partial VAR models where the conditioning variables are NFI since this is the only finite-lag VAR model compatible with such processes. We show how SSW's conclusions remain valid. This means that whenever a block of coefficients in the partial VAR can be written as coefficients on zero-mean I(0) regressors in models including a constant term, they will have a joint asymptotic normal distribution. Monte Carlo simulations and an empirical application of our theoretical results are also provided. Copyright Royal Economic Socciety 2004

Suggested Citation

  • Juan J. Dolado & Francesc Marmol, 2004. "Asymptotic inference results for multivariate long-memory processes," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 168-190, June.
  • Handle: RePEc:ect:emjrnl:v:7:y:2004:i:1:p:168-190
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/servlet/useragent?func=synergy&synergyAction=showTOC&journalCode=ectj&volume=7&issue=1&year=2004&part=null
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nielsen, Morten Orregaard & Shimotsu, Katsumi, 2007. "Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 574-596, December.
    2. Dietmar Bauer & Alex Maynard, 2010. "Persistence-robust Granger causality testing," Working Papers 1011, University of Guelph, Department of Economics and Finance.
    3. Nielsen, Morten Orregaard, 2005. "Noncontemporaneous cointegration and the importance of timing," Economics Letters, Elsevier, vol. 86(1), pages 113-119, January.
    4. Katarzyna Lasak, 2008. "Maximum likelihood estimation of fractionally cointegrated systems," CREATES Research Papers 2008-53, Department of Economics and Business Economics, Aarhus University.
    5. Bauer, Dietmar & Maynard, Alex, 2012. "Persistence-robust surplus-lag Granger causality testing," Journal of Econometrics, Elsevier, vol. 169(2), pages 293-300.
    6. Bent Jesper Christensen & Robinson Kruse & Philipp Sibbertsen, 2013. "A unified framework for testing in the linear regression model under unknown order of fractional integration," CREATES Research Papers 2013-35, Department of Economics and Business Economics, Aarhus University.
    7. Avarucci, Marco & Marinucci, Domenico, 2005. "Polynomial cointegration among stationary processes with long memory," UC3M Working papers. Economics we055123, Universidad Carlos III de Madrid. Departamento de Economía.
    8. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "Testing I(1) against I(d) alternatives in the presence of deteministic components," Economics Working Papers 957, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Uwe Hassler & Francesc Marmol & Carlos Velasco, 2008. "Fractional cointegration in the presence of linear trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 1088-1103, November.
    10. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2003. "Testing for a Unit Root Against Fractional Alternatives in the Presence of a Maintained Trend," Working Papers 29, Barcelona Graduate School of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:7:y:2004:i:1:p:168-190. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/resssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.