IDEAS home Printed from
   My bibliography  Save this article

Wohnungspreise und Mieten steigen 2013 in vielen deutschen Großstädten weiter


  • Konstantin A. Kholodilin
  • Andreas Mense


The prices and rents for flats in the most large German cities have been markedly grown in the last few years. This tendency will continue through 2013, too. Berlin, Hamburg, Munich, and Frankfurt am Main are leading in terms of growth of the home prices and rents. In these cities, the prices are growing much faster than the rents. By contrast, the prices and rents in the cities of the Ruhrgebiet are expected to stagnate or even decline. Die Preise von Eigentumswohnungen und die Wohnungsmieten sind in den vergangenen Jahren in den meisten deutschen Großstädten deutlich gestiegen. Diese Entwicklung wird sich 2013 fortsetzen. Berlin, Hamburg, München und Frankfurt am Main liegen bei den Preis- und Mietsteigerungen weiterhin an der Spitze. In diesen Städten ziehen die Preise deutlich stärker an als die Mieten. Für die Großstädte des Ruhrgebiets sind hingegen stagnierende oder sogar rückläufige Preise und Mieten zu erwarten.

Suggested Citation

  • Konstantin A. Kholodilin & Andreas Mense, 2012. "Wohnungspreise und Mieten steigen 2013 in vielen deutschen Großstädten weiter," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 79(45), pages 3-13.
  • Handle: RePEc:diw:diwwob:79-45-1

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Homburg, Stefan & Houben, Henriette & Maiterth, Ralf, 2007. "Rechtsform und Finanzierung nach der Unternehmensteuerreform 2008," EconStor Open Access Articles, ZBW - German National Library of Economics, pages 376-381.
    2. Homburg, Stefan & Houben, Henriette & Maiterth, Ralf, 2008. "Optimale Eigenfinanzierung der Personenunternehmen nach der Unternehmensteuerreform 2008/2009," EconStor Open Access Articles, ZBW - German National Library of Economics, pages 29-47.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Housing prices; housing rents; forecasting; dynamic panel model; . - spatial autocorrelation; German cities;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwob:79-45-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibliothek). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.