IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Robust Inference In Autoregressions With Multiple Outliers

  • Cavaliere, Giuseppe
  • Georgiev, Iliyan

We consider robust methods for estimation and unit root (UR) testing in autoregressions with infrequent outliers whose number, size, and location can be random and unknown. We show that in this setting standard inference based on ordinary least squares estimation of an augumented Dickey–Fuller (ADF) regression may not be reliable, because (a) clusters of outliers may lead to inconsistent estimation of the autoregressive parameters and (b) large outliers induce a jump component in the asymptotic distribution of UR test statistics. In the benchmark case of known outlier location, we discuss why the augmentation of the ADF regression with appropriate dummy variables not only ensures consistent parameter estimation but also gives rise to UR tests with significant power gains, growing with the number and the size of the outliers. In the case of unknown outlier location, the dummy-based approach is compared with a robust, mixed Gaussian, quasi maximum likelihood (QML) approach, novel in this context. It is proved that, when the ordinary innovations are Gaussian, the QML and the dummy-based approach are asymptotically equivalent, yielding UR tests with the same asymptotic size and power. Moreover, as a by-product of QML the outlier dates can be consistently estimated. When the innovations display tails fatter than Gaussian, the QML approach ensures further power gains over the dummy-based method. Simulations show that the QML ADF-type t -test, in conjunction with standard Dickey–Fuller critical values, yields the best combination of finite-sample size and power.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://journals.cambridge.org/abstract_S0266466609990272
File Function: link to article abstract page
Download Restriction: no

Article provided by Cambridge University Press in its journal Econometric Theory.

Volume (Year): 25 (2009)
Issue (Month): 06 (December)
Pages: 1625-1661

as
in new window

Handle: RePEc:cup:etheor:v:25:y:2009:i:06:p:1625-1661_99
Contact details of provider: Postal: Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK
Web page: http://journals.cambridge.org/jid_ECTEmail:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:25:y:2009:i:06:p:1625-1661_99. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.