IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v22y2006i04p587-613_06.html
   My bibliography  Save this article

A Nonparametric Bootstrap Test Of Conditional Distributions

Author

Listed:
  • Fan, Yanqin
  • Li, Qi
  • Min, Insik

Abstract

This paper proposes a bootstrap test for the correct specification of parametric conditional distributions. It extends Zheng's test (Zheng, 2000, Econometric Theory 16, 667–691) to allow for discrete dependent variables and for mixed discrete and continuous conditional variables. We establish the asymptotic null distribution of the test statistic with data-driven stochastic smoothing parameters. By smoothing both the discrete and continuous variables via the method of cross-validation, our test has the advantage of automatically removing irrelevant variables from the estimate of the conditional density function and, as a consequence, enjoys substantial power gains in finite samples, as confirmed by our simulation results. The simulation results also reveal that the bootstrap test successfully overcomes the size distortion problem associated with Zheng's test.We are grateful for the insightful comments from three referees and a co-editor that greatly improved the paper. Li's research is partially supported by the Private Enterprise Research Center, Texas A&M University. Fan is grateful to the National Science Foundation for research support.

Suggested Citation

  • Fan, Yanqin & Li, Qi & Min, Insik, 2006. "A Nonparametric Bootstrap Test Of Conditional Distributions," Econometric Theory, Cambridge University Press, vol. 22(4), pages 587-613, August.
  • Handle: RePEc:cup:etheor:v:22:y:2006:i:04:p:587-613_06
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466606060294/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obbey Elamin & Len Gill & Martyn Andrews, 2020. "Insights from kernel conditional-probability estimates into female labour force participation decision in the UK," Empirical Economics, Springer, vol. 58(6), pages 2981-3006, June.
    2. Chen, Bin & Hong, Yongmiao, 2012. "Testing For The Markov Property In Time Series," Econometric Theory, Cambridge University Press, vol. 28(1), pages 130-178, February.
    3. Chen, Bin & Hong, Yongmiao, 2016. "Detecting For Smooth Structural Changes In Garch Models," Econometric Theory, Cambridge University Press, vol. 32(03), pages 740-791, June.
    4. Chauvet, Marcelle & Tierney, Heather L. R., 2007. "Real Time Changes in Monetary Policy," MPRA Paper 16199, University Library of Munich, Germany, revised Apr 2009.
    5. Henderson, Daniel J. & Parmeter, Christopher F., 2015. "A consistent bootstrap procedure for nonparametric symmetry tests," Economics Letters, Elsevier, vol. 131(C), pages 78-82.
    6. repec:wyi:journl:002117 is not listed on IDEAS
    7. Huang, Ta-Cheng & Li, Hongjun & Li, Zheng, 2020. "A modified bootstrap for kernel-based specification test with heavy-tailed data," Economics Letters, Elsevier, vol. 189(C).
    8. repec:wyi:journl:002142 is not listed on IDEAS
    9. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    10. Chen, Bin & Hong, Yongmiao, 2014. "A unified approach to validating univariate and multivariate conditional distribution models in time series," Journal of Econometrics, Elsevier, vol. 178(P1), pages 22-44.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:22:y:2006:i:04:p:587-613_06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.