IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v20y2004i04p671-689_20.html
   My bibliography  Save this article

A Simple Test Of Normality For Time Series

Author

Listed:
  • Lobato, Ignacio N.
  • Velasco, Carlos

Abstract

This paper considers testing for normality for correlated data. The proposed test procedure employs the skewness-kurtosis test statistic, but studentized by standard error estimators that are consistent under serial dependence of the observations. The standard error estimators are sample versions of the asymptotic quantities that do not incorporate any downweighting, and, hence, no smoothing parameter is needed. Therefore, the main feature of our proposed test is its simplicity, because it does not require the selection of any user-chosen parameter such as a smoothing number or the order of an approximating model.We are very grateful to Don Andrews and two referees for useful comments and suggestions. We are especially thankful to a referee who provided a FORTRAN code. Lobato acknowledges financial support from Asociación Mexicana de Cultura and from Consejo Nacional de Ciencia y Tecnologìa (CONACYT) under project grant 41893-S. Velasco acknowledges financial support from Spanish Dirección General de Enseñanza Superior, BEC 2001-1270.

Suggested Citation

  • Lobato, Ignacio N. & Velasco, Carlos, 2004. "A Simple Test Of Normality For Time Series," Econometric Theory, Cambridge University Press, vol. 20(4), pages 671-689, August.
  • Handle: RePEc:cup:etheor:v:20:y:2004:i:04:p:671-689_20
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466604204030/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jurgita Arnastauskaitė & Tomas Ruzgas & Mindaugas Bražėnas, 2021. "A New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study," Mathematics, MDPI, vol. 9(23), pages 1-20, November.
    2. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    3. Solomon Temidayo Owolabi & Kakaba Madi & Ahmed Mukalazi Kalumba, 2021. "Comparative evaluation of spatio-temporal attributes of precipitation and streamflow in Buffalo and Tyume Catchments, Eastern Cape, South Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4236-4251, March.
    4. Psaradakis, Zacharias & Vávra, Marián, 2017. "A distance test of normality for a wide class of stationary processes," Econometrics and Statistics, Elsevier, vol. 2(C), pages 50-60.
    5. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
    6. Chen, Yi-Ting, 2012. "A simple approach to standardized-residuals-based higher-moment tests," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 427-453.
    7. Jara, Alejandro & Piña, Marco, 2023. "Exchange rate volatility and the effectiveness of FX interventions: The case of Chile," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    8. Mohamed Boutahar, 2010. "Behaviour of skewness, kurtosis and normality tests in long memory data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(2), pages 193-215, June.
    9. Zacharias Psaradakis & Marian Vavra, 2017. "Normality Tests for Dependent Data," Working and Discussion Papers WP 12/2017, Research Department, National Bank of Slovakia.
    10. Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
    11. Donghang Luo & Ke Zhu & Huan Gong & Dong Li, 2020. "Testing error distribution by kernelized Stein discrepancy in multivariate time series models," Papers 2008.00747, arXiv.org.
    12. Chioneso S. Marange & Yongsong Qin & Raymond T. Chiruka & Jesca M. Batidzirai, 2023. "A Blockwise Empirical Likelihood Test for Gaussianity in Stationary Autoregressive Processes," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    13. Malahayati, Marissa, 2023. "Indonesia’s forest management progress: empirical analysis of environmental Kuznets curve," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(3), September.
    14. Marian Vavra, 2016. "Testing the Validity of Assumptions of UC-ARIMA Models for Trend-Cycle Decompositions," Working and Discussion Papers WP 4/2016, Research Department, National Bank of Slovakia.
    15. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
    16. Jara, Alejandro & Piña, Marco, 2023. "Exchange rate volatility and the effectiveness of FX interventions: The case of Chile," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    17. Nieto-Reyes, Alicia & Cuesta-Albertos, Juan Antonio & Gamboa, Fabrice, 2014. "A random-projection based test of Gaussianity for stationary processes," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 124-141.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:20:y:2004:i:04:p:671-689_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.