IDEAS home Printed from https://ideas.repec.org/a/cbu/jrnlec/y2022v6p11-19.html
   My bibliography  Save this article

Predictive Modelling Of Select Cryptocurrencies And Identifying The Best Suitable Model - With Reference To Arima And Anns

Author

Listed:
  • PROF. REEPU

    (CHANDIGARH UNIVERSITY)

  • PROF.BIJESH DHYANI

    (FACULTY, MANAGEMENT STUDIES, GRAPHIC ERA DEEMED TO BE UNIVERSITY DEHRADUN, INDIA)

  • MS. AYUSHI

    (STUDENT, FIIB, NEW DELHI)

  • DR. SUDHI SHARMA

    (ASSISTANT PROFESSOR, FIIB, NEW DELHI)

  • DR. MANISH KUMAR

    (ASSOCIATE PROFESSOR, MANAGEMENT STUDIES, GRAPHIC ERA DEEMED TO BE UNIVERSITY DEHRADUN, INDIA)

Abstract

In the 4th Industrial revolution, cryptocurrencies emerged as a technology-based financial asset. The digital currency market is the repercussion of the financial crisis of 2008, thus creating disruption in the whole financial market. Investors are fascinated by the crypto market to get the benefit of abnormal returns. Taking into consideration of active trading in digital currency, the paper identifies the best predictable model of select cryptocurrencies i.e. Bitcoin, Ethereum, and Tether by applying ARIMA and ANNs. Finally, the robustness of models has been found by using the criteria i.e. MSE and MASE. It has been found that ANNs are the most suitable model among the two to predict the future prices of cryptocurrencies. The results of the study comprise that the best fit model of ARIMA for Bitcoin is (4,1,1), for Tether (1,1,2), and for Ethereum (1,1,1). Results of ANNs show that for Bitcoin, Tether, and Ethereum, the best suited ANN models are NNAR(1,1); NNAR(16,8), and NNAR(7,4), respectively. The study is of great importance to investors who are looking for investments in the most traded cryptocurrencies. Finally, from the results of various parameters i.e. RMSE, MAE, MPE, and MAPE, for Bitcoin ARIMA is the best-suited model and for Tether and Ethereum, ANNs are the best-suited or robust models for predicting the stock prices.

Suggested Citation

  • Prof. Reepu & Prof.Bijesh Dhyani & Ms. Ayushi & Dr. Sudhi Sharma & Dr. Manish Kumar, 2022. "Predictive Modelling Of Select Cryptocurrencies And Identifying The Best Suitable Model - With Reference To Arima And Anns," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 6, pages 11-19, December.
  • Handle: RePEc:cbu:jrnlec:y:2022:v:6:p:11-19
    as

    Download full text from publisher

    File URL: https://www.utgjiu.ro/revista/ec/pdf/2022-06/02_Reepu.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
    2. Fahad Mostafa & Pritam Saha & Mohammad Rafiqul Islam & Nguyet Nguyen, 2021. "GJR-GARCH Volatility Modeling under NIG and ANN for Predicting Top Cryptocurrencies," JRFM, MDPI, vol. 14(9), pages 1-22, September.
    3. Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    2. Bouri, Elie & Christou, Christina & Gupta, Rangan, 2022. "Forecasting returns of major cryptocurrencies: Evidence from regime-switching factor models," Finance Research Letters, Elsevier, vol. 49(C).
    3. Jirou, Ismail & Jebabli, Ikram & Lahiani, Amine, 2025. "A hybrid deep learning model for cryptocurrency returns forecasting: Comparison of the performance of financial markets and impact of external variables," Research in International Business and Finance, Elsevier, vol. 73(PA).
    4. Federico D'Amario & Milos Ciganovic, 2022. "Forecasting Cryptocurrencies Log-Returns: a LASSO-VAR and Sentiment Approach," Papers 2210.00883, arXiv.org.
    5. Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
    6. Yang Zhou & Chi Xie & Gang-Jin Wang & Jue Gong & You Zhu, 2025. "Forecasting cryptocurrency volatility: a novel framework based on the evolving multiscale graph neural network," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-52, December.
    7. Walid Ben Omrane & Khaled Guesmi & Qi Qianru & Samir Saadi, 2023. "The high-frequency impact of macroeconomic news on jumps and co-jumps in the cryptocurrency markets," Annals of Operations Research, Springer, vol. 330(1), pages 177-209, November.
    8. Ayush Singh & Anshu K. Jha & Amit N. Kumar, 2024. "Prediction of Cryptocurrency Prices through a Path Dependent Monte Carlo Simulation," Papers 2405.12988, arXiv.org.
    9. Kerolly Kedma Felix do Nascimento & Fábio Sandro dos Santos & Jader Silva Jale & Silvio Fernando Alves Xavier Júnior & Tiago A. E. Ferreira, 2023. "Extracting Rules via Markov Chains for Cryptocurrencies Returns Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1095-1114, March.
    10. Yamashiro, Hirochika & Nonaka, Hirofumi, 2021. "Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem," Operations Research Perspectives, Elsevier, vol. 8(C).
    11. Alireza Rezazadeh & Yasamin Jafarian & Ali Kord, 2022. "Explainable Ensemble Machine Learning for Breast Cancer Diagnosis Based on Ultrasound Image Texture Features," Forecasting, MDPI, vol. 4(1), pages 1-13, February.
    12. Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    13. Karl Oton Rudolf & Samer Ajour El Zein & Nicola Jackman Lansdowne, 2021. "Bitcoin as an Investment and Hedge Alternative. A DCC MGARCH Model Analysis," Risks, MDPI, vol. 9(9), pages 1-22, August.
    14. Stylianos Asimakopoulos & Marco Lorusso & Francesco Ravazzolo, 2023. "A Bayesian DSGE Approach to Modelling Cryptocurrency"," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 1012-1035, December.
    15. A. Fronzetti Colladon & S. Grassi & F. Ravazzolo & F. Violante, 2020. "Forecasting financial markets with semantic network analysis in the COVID-19 crisis," Papers 2009.04975, arXiv.org, revised Jul 2023.
    16. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    17. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    18. Walid Ben Omrane & Qianru Qi & Samir Saadi, 2025. "Cryptocurrency markets, macroeconomic news announcements and energy consumption," Annals of Operations Research, Springer, vol. 347(1), pages 743-760, April.
    19. Olufemi Samuel Adegboyo & Kiran Sarwar, 2025. "Modelling and forecasting of Nigeria stock market volatility," Future Business Journal, Springer, vol. 11(1), pages 1-13, December.
    20. Foued Saâdaoui & Hana Rabbouch, 2024. "Structured multifractal scaling of the principal cryptocurrencies: Examination using a self‐explainable machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2917-2934, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbu:jrnlec:y:2022:v:6:p:11-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ecobici Nicolae The email address of this maintainer does not seem to be valid anymore. Please ask Ecobici Nicolae to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/fetgjro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.