IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v71y2025i6id114-2025-pse.html
   My bibliography  Save this article

Improving yield by breaking the seed furrow and covering the soil after sowing in strip-tillage mode

Author

Listed:
  • Xinliang Zhao

    (College of Engineering, Northeast Agricultural University, Harbin, P.R. China)

  • Wei Zhang

    (School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, P.R. China)

Abstract

Based on strip-tillage technology, this study explores the optimal seedbed environment for maize growth through a three-year field agronomic experiment. A comparative analysis of two planting modes, flat planting and ridge planting, was conducted, and a two-factor, three-level experimental design was implemented (furrow-breaking width: 8, 10 and 12 cm; furrow-breaking depth: 2, 3 and 4 cm), with manual soil covering without furrow breaking as the control group. Analysis of the averaged data over three years indicates that furrow-breaking treatment significantly increased maize yield under both flat and ridge planting modes, highlighting the importance of furrow breaking for maize growth. Ridge planting increased yield by an average of 7.58% compared to flat planting. The optimal yield was achieved at a furrow-breaking width of 10 cm and a depth of 4 cm, where ridge and flat planting yields were 10.37% and 10.43% higher than the average values at each level, respectively. Additionally, at the optimal yield level, the chlorophyll soil-plant analysis development (SPAD) values for ridge and flat planting were 15.36% and 17.06% higher than the average values. The emergence rates of ridge and flat planting maize were 5.43% and 4.93% higher than the average values, respectively. This not only enhanced crop stress resistance but also improved overall economic benefits.

Suggested Citation

  • Xinliang Zhao & Wei Zhang, 2025. "Improving yield by breaking the seed furrow and covering the soil after sowing in strip-tillage mode," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 71(6), pages 426-440.
  • Handle: RePEc:caa:jnlpse:v:71:y:2025:i:6:id:114-2025-pse
    DOI: 10.17221/114/2025-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/114/2025-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/114/2025-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/114/2025-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jilei & Shi, Xiangxue & Li, Zizhong & Zhang, Yan & Liu, Yanqing & Peng, Yuxing, 2021. "Responses of runoff and soil erosion to planting pattern, row direction, and straw mulching on sloped farmland in the corn belt of northeast China," Agricultural Water Management, Elsevier, vol. 253(C).
    2. Zhang, Dalong & Jiao, Xiaocong & Du, Qingjie & Song, Xiaoming & Li, Jianming, 2018. "Reducing the excessive evaporative demand improved photosynthesis capacity at low costs of irrigation via regulating water driving force and moderating plant water stress of two tomato cultivars," Agricultural Water Management, Elsevier, vol. 199(C), pages 22-33.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoming Du & Tongbing Guo & Chen Ma, 2022. "Effects of Topographic Factors on Cultivated-Land Ridge Orientation in the Black Soil Region of Songnen Plain," Land, MDPI, vol. 11(9), pages 1-13, September.
    2. Lorenzo, Pilar & Reyes, Rafael & Medrano, Evangelina & Granados, Rosa & Bonachela, Santiago & Hernández, Joaquín & López, Juan C. & Magán, Juan J. & del Amor, Francisco M. & Sánchez-Guerrero, M. Cruz, 2024. "Hybrid passive cooling and heating system for Mediterranean greenhouses. Microclimate and sweet pepper crop response," Agricultural Water Management, Elsevier, vol. 301(C).
    3. Yin, Yinghua & Li, Ganghao & Xia, Ying & Wu, Maoqian & Huang, Min & Zhai, Limei & Fan, Xianpeng & Zhou, Jiwen & Kong, Xiangqiong & Zhang, Fulin & Riaz, Muhammad, 2024. "How to effectively reduce sloping farmland nutrient loss and soil erosions in the Three Gorges Reservoir area," Agricultural Water Management, Elsevier, vol. 304(C).
    4. Li, Qingming & Wei, Min & Li, Yiman & Feng, Gaili & Wang, Yaping & Li, Shuhao & Zhang, Dalong, 2019. "Effects of soil moisture on water transport, photosynthetic carbon gain and water use efficiency in tomato are influenced by evaporative demand," Agricultural Water Management, Elsevier, vol. 226(C).
    5. Yanpei Li & Mingan Shao & Jiao Wang & Tongchuan Li, 2020. "Effects of Earthworm Cast Application on Water Evaporation and Storage in Loess Soil Column Experiments," Sustainability, MDPI, vol. 12(8), pages 1-13, April.
    6. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    7. Qu, Zhaoming & Qi, Xingchao & Liu, Yanli & Liu, Kexin & Li, Chengliang, 2020. "Interactive effect of irrigation and polymer-coated potassium chloride on tomato production in a greenhouse," Agricultural Water Management, Elsevier, vol. 235(C).
    8. Wu, You & Si, Wei & Yan, Shicheng & Wu, Lifeng & Zhao, Wenju & Zhang, Jiale & Zhang, Fucang & Fan, Junliang, 2023. "Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices," Agricultural Water Management, Elsevier, vol. 277(C).
    9. Ding, Beibei & Li, Yuqian & Marek, Gary W. & Ge, Jianing & Han, Yiwen & Hu, Kelin & Yan, Tiezhu & Ale, Srinivasulu & Zhang, Guilong & Srinivasan, Raghavan & Chen, Yong, 2024. "Impacts of land use changes on water conservation in the Songhuajiang River basin in Northeast China using the SWAT model," Agricultural Water Management, Elsevier, vol. 306(C).
    10. Fahui Jiang & Xinhua Peng & Qinglin Li & Yongqi Qian & Zhongbin Zhang, 2024. "Potential Reduction of Spatiotemporal Patterns of Water and Wind Erosion with Conservation Tillage in Northeast China," Land, MDPI, vol. 13(8), pages 1-19, August.
    11. Du, Rongcheng & Jiang, Yu & Li, Rui & Li, Dayong & Li, Runjie & Yang, Xiaoqing & Zhang, Zhi, 2024. "Appropriate water and fertilizer supply enhanced yield by promoting photosynthesis and growth of strawberries," Agricultural Water Management, Elsevier, vol. 304(C).
    12. Wang, Wenjuan & Xu, Ru & Wei, Rong & Wang, Wene & Hu, Xiaotao, 2023. "Effects of different pressures and laying lengths of micro-sprinkling hose irrigation on irrigation uniformity and yield of spring wheat," Agricultural Water Management, Elsevier, vol. 288(C).
    13. Wu, You & Yan, Shicheng & Fan, Junliang & Zhang, Fucang & Zhao, Wenju & Zheng, Jing & Guo, Jinjin & Xiang, Youzhen & Wu, Lifeng, 2022. "Combined effects of irrigation level and fertilization practice on yield, economic benefit and water-nitrogen use efficiency of drip-irrigated greenhouse tomato," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Song, Zengzhen & Peng, Yuxing & Li, Zizhong & Zhang, Shuai & Liu, Xiaotong & Tan, Senwen, 2022. "Two irrigation events can achieve relatively high, stable corn yield and water productivity in aeolian sandy soil of northeast China," Agricultural Water Management, Elsevier, vol. 260(C).
    15. Geng, Qingling & Zhao, Yongkun & Sun, Shikun & He, Xiaohui & Wang, Dong & Wu, Dingrong & Tian, Zhihui, 2023. "Spatio-temporal changes and its driving forces of irrigation water requirements for cotton in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 280(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:71:y:2025:i:6:id:114-2025-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.