IDEAS home Printed from https://ideas.repec.org/a/caa/jnlcjs/v65y2020i12id83-2020-cjas.html
   My bibliography  Save this article

The use of genomic data and imputation methods in dairy cattle breeding

Author

Listed:
  • Anita Klímová

    (Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague - Suchdol, Czech Republic
    Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, Prague - Uhříněves, Czech Republic)

  • Eva Kašná

    (Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, Prague - Uhříněves, Czech Republic)

  • Karolína Machová

    (Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague - Suchdol, Czech Republic)

  • Michaela Brzáková

    (Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, Prague - Uhříněves, Czech Republic)

  • Josef Přibyl

    (Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, Prague - Uhříněves, Czech Republic)

  • Luboš Vostrý

    (Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague - Suchdol, Czech Republic)

Abstract

The inclusion of animal genotype data has contributed to the development of genomic selection. Animals are selected not only based on pedigree and phenotypic data but also on the basis of information about their genotypes. Genomic information helps to increase the accuracy of selection of young animals and thus enables a reduction of the generation interval. Obtaining information about genotypes in the form of SNPs (single nucleotide polymorphisms) has led to the development of new chips for genotyping. Several methods of genomic comparison have been developed as a result. One of the methods is data imputation, which allows the missing SNPs to be calculated using low-density chips to high-density chips. Through imputations, it is possible to combine information from diverse sets of chips and thus obtain more information about genotypes at a lower cost. Increasing the amount of data helps increase the reliability of predicting genomic breeding values. Imputation methods are increasingly used in genome-wide association studies. When classical genotyping and genome-wide sequencing data are combined, this option helps to increase the chances of identifying loci that are associated with economically significant traits.

Suggested Citation

  • Anita Klímová & Eva Kašná & Karolína Machová & Michaela Brzáková & Josef Přibyl & Luboš Vostrý, 2020. "The use of genomic data and imputation methods in dairy cattle breeding," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 65(12), pages 445-453.
  • Handle: RePEc:caa:jnlcjs:v:65:y:2020:i:12:id:83-2020-cjas
    DOI: 10.17221/83/2020-CJAS
    as

    Download full text from publisher

    File URL: http://cjas.agriculturejournals.cz/doi/10.17221/83/2020-CJAS.html
    Download Restriction: free of charge

    File URL: http://cjas.agriculturejournals.cz/doi/10.17221/83/2020-CJAS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/83/2020-CJAS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bryan N Howie & Peter Donnelly & Jonathan Marchini, 2009. "A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 5(6), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuan Gao & Nan Wang & Xiuqing Guo & Julie T Ziegler & Kent D Taylor & Anny H Xiang & Yang Hai & Steven J Kridel & Jerry L Nadler & Fouad Kandeel & Leslie J Raffel & Yii-Der I Chen & Jill M Norris & J, 2015. "A Comprehensive Analysis of Common and Rare Variants to Identify Adiposity Loci in Hispanic Americans: The IRAS Family Study (IRASFS)," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-17, November.
    2. Rakesh Chettier & Lesa Nelson & James W Ogilvie & Hans M Albertsen & Kenneth Ward, 2015. "Haplotypes at LBX1 Have Distinct Inheritance Patterns with Opposite Effects in Adolescent Idiopathic Scoliosis," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-11, February.
    3. Michel S. Naslavsky & Marilia O. Scliar & Guilherme L. Yamamoto & Jaqueline Yu Ting Wang & Stepanka Zverinova & Tatiana Karp & Kelly Nunes & José Ricardo Magliocco Ceroni & Diego Lima Carvalho & Carlo, 2022. "Whole-genome sequencing of 1,171 elderly admixed individuals from Brazil," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. repec:plo:pone00:0172082 is not listed on IDEAS
    5. Carl Nettelblad, 2013. "Breakdown of Methods for Phasing and Imputation in the Presence of Double Genotype Sharing," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-5, March.
    6. repec:plo:pgen00:1003220 is not listed on IDEAS
    7. Viinikainen, Jutta & Bryson, Alex & Böckerman, Petri & Kari, Jaana T. & Lehtimäki, Terho & Raitakari, Olli & Viikari, Jorma & Pehkonen, Jaakko, 2022. "Does better education mitigate risky health behavior? A mendelian randomization study," Economics & Human Biology, Elsevier, vol. 46(C).
    8. Morten Dybdahl Krebs & Gonçalo Espregueira Themudo & Michael Eriksen Benros & Ole Mors & Anders D. Børglum & David Hougaard & Preben Bo Mortensen & Merete Nordentoft & Michael J. Gandal & Chun Chieh F, 2021. "Associations between patterns in comorbid diagnostic trajectories of individuals with schizophrenia and etiological factors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Mette K Andersen & Emil Jørsboe & Line Skotte & Kristian Hanghøj & Camilla H Sandholt & Ida Moltke & Niels Grarup & Timo Kern & Yuvaraj Mahendran & Bolette Søborg & Peter Bjerregaard & Christina V L L, 2020. "The derived allele of a novel intergenic variant at chromosome 11 associates with lower body mass index and a favorable metabolic phenotype in Greenlanders," PLOS Genetics, Public Library of Science, vol. 16(1), pages 1-17, January.
    10. Hans M Albertsen & Rakesh Chettier & Pamela Farrington & Kenneth Ward, 2013. "Genome-Wide Association Study Link Novel Loci to Endometriosis," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    11. Faheem Mitha & Herodotos Herodotou & Nedyalko Borisov & Chen Jiang & Josh Yoder & Kouros Owzar, 2011. "SNPpy - Database Management for SNP Data from Genome Wide Association Studies," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-8, October.
    12. Qingqin S Li & Antonio R Parrado & Mahesh N Samtani & Vaibhav A Narayan & Alzheimer’s Disease Neuroimaging Initiative, 2015. "Variations in the FRA10AC1 Fragile Site and 15q21 Are Associated with Cerebrospinal Fluid Aβ1-42 Level," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-17, August.
    13. Peng Chen & Rick Twee-Hee Ong & Wan-Ting Tay & Xueling Sim & Mohammad Ali & Haiyan Xu & Chen Suo & Jianjun Liu & Kee-Seng Chia & Eranga Vithana & Terri L Young & Tin Aung & Wei-Yen Lim & Chiea-Chuen K, 2013. "A Study Assessing the Association of Glycated Hemoglobin A1C (HbA1C) Associated Variants with HbA1C, Chronic Kidney Disease and Diabetic Retinopathy in Populations of Asian Ancestry," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    14. Markus Draaken & Michael Knapp & Tracie Pennimpede & Johanna M Schmidt & Anne-Karolin Ebert & Wolfgang Rösch & Raimund Stein & Boris Utsch & Karin Hirsch & Thomas M Boemers & Elisabeth Mangold & Stefa, 2015. "Genome-wide Association Study and Meta-Analysis Identify ISL1 as Genome-wide Significant Susceptibility Gene for Bladder Exstrophy," PLOS Genetics, Public Library of Science, vol. 11(3), pages 1-13, March.
    15. Sara L Van Driest & Tracy L McGregor & Digna R Velez Edwards & Ben R Saville & Terrie E Kitchner & Scott J Hebbring & Murray Brilliant & Hayan Jouni & Iftikhar J Kullo & C Buddy Creech & Prince J Kann, 2015. "Genome-Wide Association Study of Serum Creatinine Levels during Vancomycin Therapy," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    16. repec:plo:pone00:0061253 is not listed on IDEAS
    17. Myoung Keun Lee & John R Shaffer & Elizabeth J Leslie & Ekaterina Orlova & Jenna C Carlson & Eleanor Feingold & Mary L Marazita & Seth M Weinberg, 2017. "Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    18. Anu Loukola & Jadwiga Buchwald & Richa Gupta & Teemu Palviainen & Jenni Hällfors & Emmi Tikkanen & Tellervo Korhonen & Miina Ollikainen & Antti-Pekka Sarin & Samuli Ripatti & Terho Lehtimäki & Olli Ra, 2015. "A Genome-Wide Association Study of a Biomarker of Nicotine Metabolism," PLOS Genetics, Public Library of Science, vol. 11(9), pages 1-23, September.
    19. Taru Tukiainen & Matti Pirinen & Antti-Pekka Sarin & Claes Ladenvall & Johannes Kettunen & Terho Lehtimäki & Marja-Liisa Lokki & Markus Perola & Juha Sinisalo & Efthymia Vlachopoulou & Johan G Eriksso, 2014. "Chromosome X-Wide Association Study Identifies Loci for Fasting Insulin and Height and Evidence for Incomplete Dosage Compensation," PLOS Genetics, Public Library of Science, vol. 10(2), pages 1-12, February.
    20. Wei-Yu Lin & Ian W Brock & Dan Connley & Helen Cramp & Rachel Tucker & Jon Slate & Malcolm W R Reed & Sabapathy P Balasubramanian & Lisa A Cannon-Albright & Nicola J Camp & Angela Cox, 2013. "Associations of ATR and CHEK1 Single Nucleotide Polymorphisms with Breast Cancer," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-1, July.
    21. Harriëtte Riese & Loretto M Muñoz & Catharina A Hartman & Xiuhua Ding & Shaoyong Su & Albertine J Oldehinkel & Arie M van Roon & Peter J van der Most & Joop Lefrandt & Ron T Gansevoort & Pim van der H, 2014. "Identifying Genetic Variants for Heart Rate Variability in the Acetylcholine Pathway," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    22. Bárbara Sousa da Mota & Simone Rubinacci & Diana Ivette Cruz Dávalos & Carlos Eduardo G. Amorim & Martin Sikora & Niels N. Johannsen & Marzena H. Szmyt & Piotr Włodarczak & Anita Szczepanek & Marcin M, 2023. "Imputation of ancient human genomes," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    23. Oren E Livne & Lide Han & Gorka Alkorta-Aranburu & William Wentworth-Sheilds & Mark Abney & Carole Ober & Dan L Nicolae, 2015. "PRIMAL: Fast and Accurate Pedigree-based Imputation from Sequence Data in a Founder Population," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlcjs:v:65:y:2020:i:12:id:83-2020-cjas. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.