Hierarchical Bayes Prediction for the 2008 US Presidential Election
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Sinha, Pankaj & Bansal, Ashok, 2008. "Hierarchical Bayes prediction for the 2008 US Presidential election," MPRA Paper 10470, University Library of Munich, Germany.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sinha, Pankaj & Verma, Aniket & Shah, Purav & Singh, Jahnavi & Panwar, Utkarsh, 2020. "Prediction for the 2020 United States Presidential Election using Linear Regression Model," MPRA Paper 103890, University Library of Munich, Germany, revised 20 Oct 2020.
- Sinha, Pankaj & Verma, Aniket & Shah, Purav & Singh, Jahnavi & Panwar, Utkarsh, 2020. "Prediction for the 2020 United States Presidential Election using Machine Learning Algorithm: Lasso Regression," MPRA Paper 103889, University Library of Munich, Germany, revised 31 Oct 2020.
- Pankaj Sinha & Aastha Sharma & Harsh Vardhan Singh, 2012.
"Prediction For The 2012 United States Presidential Election Using Multiple Regression Model,"
Journal of Prediction Markets, University of Buckingham Press, vol. 6(2), pages 77-97.
- Sinha, Pankaj & Sharma, Aastha & Singh, Harsh Vardhan, 2012. "Prediction for the 2012 United States Presidential Election using Multiple Regression Model," MPRA Paper 41486, University Library of Munich, Germany.
- Sinha, Pankaj & Srinivas, Sandeep & Paul, Anik & Chaudhari, Gunjan, 2016. "Forecasting 2016 US Presidential Elections Using Factor Analysis and Regression Model," MPRA Paper 74618, University Library of Munich, Germany, revised 17 Oct 2016.
- Sinha, Pankaj & Thomas, Ashley Rose & Ranjan, Varun, 2012. "Forecasting 2012 United States Presidential election using Factor Analysis, Logit and Probit Models," MPRA Paper 42062, University Library of Munich, Germany.
More about this item
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:buc:jpredm:v:2:y:2008:i:3:p:47-59. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dominic Cortis, University of Malta (email available below). General contact details of provider: http://www.ubpl.co.uk/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/buc/jpredm/v2y2008i3p47-59.html