IDEAS home Printed from
   My bibliography  Save this article

Dealing with Heterogeneity between Cohorts in Genomewide SNP Association Studies


  • Lebrec Jeremie J

    (Leiden University Medical Center, The Netherlands)

  • Stijnen Theo

    (Leiden University Medical Center)

  • van Houwelingen Hans C

    (Leiden University Medical Center)


In Genomewide association (GWA) studies investigating thousands of SNPs, large sample sizes are needed to obtain a reasonable power after correction for multiple testing. To obtain the necessary sample sizes, data from different populations/cohorts are combined. The problem of pooling evidence across cohorts bears some resemblance with meta-analysis of clinical trials, and in fact classical meta-analytic methodologies from that field are typically used in GWAs. However, in genetics, it can be expected that the cohorts show some amount of heterogeneity in the association measures that are used for significance testing. In this paper, we demonstrate how it is possible to exploit this heterogeneity to improve our ability to detect influential genetic variants. We also discuss how pathway analysis based on summary data can help resolve heterogeneity. The current standard method for testing SNPs across cohorts in GWAs will miss heterogeneous but important genetic variants affecting complex diseases. Our new testing strategy has the potential to detect them while maintaining sensitivity to variants with homogeneous effects.

Suggested Citation

  • Lebrec Jeremie J & Stijnen Theo & van Houwelingen Hans C, 2010. "Dealing with Heterogeneity between Cohorts in Genomewide SNP Association Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-22, January.
  • Handle: RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:8

    Download full text from publisher

    File URL:
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jelle J. Goeman & Sara A. van de Geer & Hans C. van Houwelingen, 2006. "Testing against a high dimensional alternative," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 477-493.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:8. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.