IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v13y2017i1p10n12.html
   My bibliography  Save this article

Group Tests for High-dimensional Failure Time Data with the Additive Hazards Models

Author

Listed:
  • Jiang Dandan

    (Center for Applied Statistical Research, School of Mathematics, Jilin University, Changchun, China)

  • Sun Jianguo

    (Center for Applied Statistical Research, School of Mathematics, Jilin University, Changchun, China; Department of Statistics, University of Missouri, Missouri, USA)

Abstract

Statistical analysis of high-dimensional data has been attracting more and more attention due to the abundance of such data in various fields such as genetic studies or genomics and the existence of many interesting topics. Among them, one is the identification of a gene or genes that have significant effects on the occurrence of or are significantly related to a certain disease. In this paper, we will discuss such a problem that can be formulated as a group test or testing a group of variables or coefficients when one faces right-censored failure time response variable. For the problem, we develop a corrected variance reduced partial profiling (CVRPP) linear regression model and a likelihood ratio test procedure when the failure time of interest follows the additive hazards model. The numerical study suggests that the proposed method works well in practical situations and gives better performance than the existing one. An illustrative example is provided.

Suggested Citation

  • Jiang Dandan & Sun Jianguo, 2017. "Group Tests for High-dimensional Failure Time Data with the Additive Hazards Models," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-10, May.
  • Handle: RePEc:bpj:ijbist:v:13:y:2017:i:1:p:10:n:12
    DOI: 10.1515/ijb-2016-0085
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2016-0085
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2016-0085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jelle J. Goeman & Sara A. Van De Geer & Hans C. Van Houwelingen, 2006. "Testing against a high dimensional alternative," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 477-493, June.
    2. Wang, Siyang & Cui, Hengjian, 2013. "Generalized F test for high dimensional linear regression coefficients," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 134-149.
    3. Jelle J. Goeman & Hans C. van Houwelingen & Livio Finos, 2011. "Testing against a high-dimensional alternative in the generalized linear model: asymptotic type I error control," Biometrika, Biometrika Trust, vol. 98(2), pages 381-390.
    4. Zhong, Ping-Shou & Chen, Song Xi, 2011. "Tests for High-Dimensional Regression Coefficients With Factorial Designs," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 260-274.
    5. Wei Lin & Jinchi Lv, 2013. "High-Dimensional Sparse Additive Hazards Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 247-264, March.
    6. Torben Martinussen & Thomas H. Scheike, 2009. "Covariate Selection for the Semiparametric Additive Risk Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 602-619, December.
    7. Ping-Shou Zhong & Tao Hu & Jun Li, 2015. "Tests for Coefficients in High-dimensional Additive Hazard Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 649-664, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping-Shou Zhong & Tao Hu & Jun Li, 2015. "Tests for Coefficients in High-dimensional Additive Hazard Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 649-664, September.
    2. He, Yi & Jaidee, Sombut & Gao, Jiti, 2023. "Most powerful test against a sequence of high dimensional local alternatives," Journal of Econometrics, Elsevier, vol. 234(1), pages 151-177.
    3. Wang, Siyang & Cui, Hengjian, 2015. "A new test for part of high dimensional regression coefficients," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 187-203.
    4. Lan, Wei & Zhong, Ping-Shou & Li, Runze & Wang, Hansheng & Tsai, Chih-Ling, 2016. "Testing a single regression coefficient in high dimensional linear models," Journal of Econometrics, Elsevier, vol. 195(1), pages 154-168.
    5. Liu, Yang & Sun, Wei & Hsu, Li & He, Qianchuan, 2022. "Statistical inference for high-dimensional pathway analysis with multiple responses," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    6. Yi He & Sombut Jaidee & Jiti Gao, 2020. "Most Powerful Test against High Dimensional Free Alternatives," Monash Econometrics and Business Statistics Working Papers 13/20, Monash University, Department of Econometrics and Business Statistics.
    7. Bin Guo & Song Xi Chen, 2016. "Tests for high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1079-1102, November.
    8. Rui Wang & Xingzhong Xu, 2021. "A Bayesian-motivated test for high-dimensional linear regression models with fixed design matrix," Statistical Papers, Springer, vol. 62(4), pages 1821-1852, August.
    9. Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "Testing predictor significance with ultra high dimensional multivariate responses," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 275-286.
    10. Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
    11. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    12. Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
    13. Gong, Siliang & Zhang, Kai & Liu, Yufeng, 2018. "Efficient test-based variable selection for high-dimensional linear models," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 17-31.
    14. Arfan Raheen Afzal & Jing Yang & Xuewen Lu, 2021. "Variable selection in partially linear additive hazards model with grouped covariates and a diverging number of parameters," Computational Statistics, Springer, vol. 36(2), pages 829-855, June.
    15. Jesse Hemerik & Jelle J. Goeman & Livio Finos, 2020. "Robust testing in generalized linear models by sign flipping score contributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 841-864, July.
    16. Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
    17. Hong Guo & Changliang Zou & Zhaojun Wang & Bin Chen, 2014. "Empirical likelihood for high-dimensional linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(7), pages 921-945, October.
    18. Lan, Wei & Ding, Yue & Fang, Zheng & Fang, Kuangnan, 2016. "Testing covariates in high dimension linear regression with latent factors," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 25-37.
    19. Ningning Xu & Aldo Solari & Jelle J. Goeman, 2023. "Closed testing with Globaltest, with application in metabolomics," Biometrics, The International Biometric Society, vol. 79(2), pages 1103-1113, June.
    20. Ai Ni & Jianwen Cai, 2018. "A regularized variable selection procedure in additive hazards model with stratified case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 443-463, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:13:y:2017:i:1:p:10:n:12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.