IDEAS home Printed from
   My bibliography  Save this article

A New Iterative Method for Ranking College Football Teams


  • Wigness Maggie B

    (Pacific University)

  • Williams Chadd C

    (Pacific University)

  • Rowell Michael J

    (Pacific University)


This paper introduces a new iterative model for ranking college football teams. It is first presented as a general model with a number of parameters. We then introduce two learning methods that use past data to predict the optimal values of the parameters for the model. Our learning algorithms are then implemented using data from 1998-2008. We analyze the accuracy of our rankings by considering bowl game outcomes for each season. We also compare our results with the Bowl Championship Series computer ranking system. We close with a discussion of possible directions for future work.

Suggested Citation

  • Wigness Maggie B & Williams Chadd C & Rowell Michael J, 2010. "A New Iterative Method for Ranking College Football Teams," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(2), pages 1-15, April.
  • Handle: RePEc:bpj:jqsprt:v:6:y:2010:i:2:n:7

    Download full text from publisher

    File URL:
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Gill Ryan & Keating Jerome, 2009. "Assessing Methods for College Football Rankings," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-21, May.
    2. Itay Fainmesser & Chaim Fershtman & Neil Gandal, 2009. "A Consistent Weighted Ranking Scheme With an Application to NCAA College Football Rankings," Journal of Sports Economics, , vol. 10(6), pages 582-600, December.
    3. Steven Caudill, 2009. "OSU and LSU: easy to spell but did they belong? Using the method of paired comparisons to evaluate the BCS rankings and the NCAA football championship game 2007-08," Applied Economics, Taylor & Francis Journals, vol. 41(25), pages 3225-3230.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:6:y:2010:i:2:n:7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.