IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v17y2021i1p7-21n7.html
   My bibliography  Save this article

A machine learning-based approach for estimating and testing associations with multivariate outcomes

Author

Listed:
  • Benkeser David

    (Emory University, School of Public Health, Atlanta, 30322, USA)

  • Mertens Andrew

    (Department of Epidemiology, University of California, Berkeley, Berkeley, USA)

  • Colford John M.

    (Department of Epidemiology, University of California, Berkeley, Berkeley, USA)

  • Hubbard Alan

    (Department of Biostatistics, University of California, Berkeley, Berkeley, USA)

  • Arnold Benjamin F.

    (Francis I. Proctor Foundation, University of California, San Fransisco, USA)

  • Stein Aryeh

    (Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, USA)

  • van der Laan Mark J.

    (Department of Biostatistics, University of California, Berkeley, Berkeley, USA)

Abstract

We propose a method for summarizing the strength of association between a set of variables and a multivariate outcome. Classical summary measures are appropriate when linear relationships exist between covariates and outcomes, while our approach provides an alternative that is useful in situations where complex relationships may be present. We utilize machine learning to detect nonlinear relationships and covariate interactions and propose a measure of association that captures these relationships. A hypothesis test about the proposed associative measure can be used to test the strong null hypothesis of no association between a set of variables and a multivariate outcome. Simulations demonstrate that this hypothesis test has greater power than existing methods against alternatives where covariates have nonlinear relationships with outcomes. We additionally propose measures of variable importance for groups of variables, which summarize each groups’ association with the outcome. We demonstrate our methodology using data from a birth cohort study on childhood health and nutrition in the Philippines.

Suggested Citation

  • Benkeser David & Mertens Andrew & Colford John M. & Hubbard Alan & Arnold Benjamin F. & Stein Aryeh & van der Laan Mark J., 2021. "A machine learning-based approach for estimating and testing associations with multivariate outcomes," The International Journal of Biostatistics, De Gruyter, vol. 17(1), pages 7-21, May.
  • Handle: RePEc:bpj:ijbist:v:17:y:2021:i:1:p:7-21:n:7
    DOI: 10.1515/ijb-2019-0061
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2019-0061
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2019-0061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Laan Mark J. & Dudoit Sandrine & Keles Sunduz, 2004. "Asymptotic Optimality of Likelihood-Based Cross-Validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    2. Bruce Desmarais, 2012. "Lessons in disguise: multivariate predictive mistakes in collective choice models," Public Choice, Springer, vol. 151(3), pages 719-737, June.
    3. Stitelman Ori M & van der Laan Mark J., 2010. "Collaborative Targeted Maximum Likelihood for Time to Event Data," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-46, June.
    4. Arafat Tayeb & Aurélie Labbe & Alexandre Bureau & Chantal Mérette, 2011. "Solving genetic heterogeneity in extended families by identifying sub-types of complex diseases," Computational Statistics, Springer, vol. 26(3), pages 539-560, September.
    5. Hu, Yingyao & Schennach, Susanne & Shiu, Ji-Liang, 2022. "Identification of nonparametric monotonic regression models with continuous nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 226(2), pages 269-294.
    6. Mahmood Zafar & Khan Salahuddin, 2009. "On the Use of K-Fold Cross-Validation to Choose Cutoff Values and Assess the Performance of Predictive Models in Stepwise Regression," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-21, July.
    7. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    8. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
    9. Brooks Jordan & van der Laan Mark J. & Go Alan S., 2012. "Targeted Maximum Likelihood Estimation for Prediction Calibration," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-35, October.
    10. van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
    11. Díaz Muñoz Iván & van der Laan Mark J., 2011. "Super Learner Based Conditional Density Estimation with Application to Marginal Structural Models," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-20, October.
    12. Susanne M. Schennach, 2013. "Regressions with Berkson errors in covariates - A nonparametric approach," Papers 1308.2836, arXiv.org.
    13. Rosenblum Michael & van der Laan Mark J., 2010. "Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-44, April.
    14. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
    15. Molinaro, Annette M. & Dudoit, Sandrine & van der Laan, M.J.Mark J., 2004. "Tree-based multivariate regression and density estimation with right-censored data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 154-177, July.
    16. Labbe Aurelie & Bureau Alexandre & Merette Chantal, 2009. "Integration of Genetic Familial Dependence Structure in Latent Class Models," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-30, January.
    17. Stitelman Ori M & Wester C. William & De Gruttola Victor & van der Laan Mark J., 2011. "Targeted Maximum Likelihood Estimation of Effect Modification Parameters in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, March.
    18. Qu, Leming & Yin, Wotao, 2012. "Copula density estimation by total variation penalized likelihood with linear equality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 384-398.
    19. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
    20. Perrin, G. & Soize, C. & Ouhbi, N., 2018. "Data-driven kernel representations for sampling with an unknown block dependence structure under correlation constraints," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 139-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:17:y:2021:i:1:p:7-21:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.