IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v13y2025i1p23n1002.html
   My bibliography  Save this article

Combining observational and experimental data for causal inference considering data privacy

Author

Listed:
  • Mann Charlotte Z.

    (Statistics Department, California Polytechnic State University, San Luis Obispo, California, United States)

  • Sales Adam C.

    (Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts, United States)

  • Gagnon-Bartsch Johann A.

    (Department of Statistics, University of Michigan, Ann Arbor, Michigan, United States)

Abstract

Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational datasets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive information might be tolerable to organizations that house confidential data. In these cases, organizations can employ data privacy techniques, which decrease disclosure risk, potentially at the expense of data utility. In this study, we explore disclosure limiting transformations of observational data, which can be combined with experimental data to estimate the sample and population average treatment effects. We consider leveraging observational data to improve generalizability of treatment effect estimates, when a randomized controlled trial (RCT) is not representative of the population of interest, and to increase precision of treatment effect estimates. Through simulation studies, we illustrate the trade-off between privacy and utility when employing different disclosure limiting transformations. We find that leveraging transformed observational data in treatment effect estimation can still improve estimation over only using data from an RCT.

Suggested Citation

  • Mann Charlotte Z. & Sales Adam C. & Gagnon-Bartsch Johann A., 2025. "Combining observational and experimental data for causal inference considering data privacy," Journal of Causal Inference, De Gruyter, vol. 13(1), pages 1-23.
  • Handle: RePEc:bpj:causin:v:13:y:2025:i:1:p:23:n:1002
    DOI: 10.1515/jci-2022-0081
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2022-0081
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2022-0081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Issa J. Dahabreh & Sarah E. Robertson & Eric J. Tchetgen & Elizabeth A. Stuart & Miguel A. Hernán, 2019. "Generalizing causal inferences from individuals in randomized trials to all trial‐eligible individuals," Biometrics, The International Biometric Society, vol. 75(2), pages 685-694, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colnet Bénédicte & Josse Julie & Varoquaux Gaël & Scornet Erwan, 2022. "Causal effect on a target population: A sensitivity analysis to handle missing covariates," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 372-414, January.
    2. Benjamin Lu & Eli Ben-Michael & Avi Feller & Luke Miratrix, 2023. "Is It Who You Are or Where You Are? Accounting for Compositional Differences in Cross-Site Treatment Effect Variation," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 420-453, August.
    3. Sarah E. Robertson & Jon A. Steingrimsson & Issa J. Dahabreh, 2024. "Cluster Randomized Trials Designed to Support Generalizable Inferences," Evaluation Review, , vol. 48(6), pages 1088-1114, December.
    4. Melody Y Huang & Harsh Parikh, 2024. "Towards Generalizing Inferences from Trials to Target Populations," Papers 2402.17042, arXiv.org, revised May 2024.
    5. Bing Li & Constantine Gatsonis & Issa J. Dahabreh & Jon A. Steingrimsson, 2023. "Estimating the area under the ROC curve when transporting a prediction model to a target population," Biometrics, The International Biometric Society, vol. 79(3), pages 2382-2393, September.
    6. Chen Wang & Shichao Han & Shan Huang, 2025. "Enhancing External Validity of Experiments with Ongoing Sampling," Papers 2502.18253, arXiv.org.
    7. Bo Zhang, 2023. "Efficient algorithms for building representative matched pairs with enhanced generalizability," Biometrics, The International Biometric Society, vol. 79(4), pages 3981-3997, December.
    8. Quinn Lanners & Cynthia Rudin & Alexander Volfovsky & Harsh Parikh, 2025. "Data Fusion for Partial Identification of Causal Effects," Papers 2505.24296, arXiv.org.
    9. Masahiro Kato & Masatoshi Uehara & Shota Yasui, 2020. "Off-Policy Evaluation and Learning for External Validity under a Covariate Shift," Papers 2002.11642, arXiv.org, revised Oct 2020.
    10. Naoki Egami & Erin Hartman, 2021. "Covariate selection for generalizing experimental results: Application to a large‐scale development program in Uganda," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1524-1548, October.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:13:y:2025:i:1:p:23:n:1002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.