IDEAS home Printed from https://ideas.repec.org/a/bpj/apjrin/v4y2010i2n4.html
   My bibliography  Save this article

Asymptotic Tail Probability of Randomly Weighted Sum of Dependent Heavy-Tailed Random Variables

Author

Listed:
  • Chen Yu

    (The University of Science and Technology of China)

  • Zhang Weiping

    (The University of Science and Technology of China)

  • Liu Jie

    (The University of Science and Technology of China)

Abstract

This paper investigates the asymptotic behavior of tail probability of a randomly weighted sum of real-valued heavy-tailed dependent random variables; the weights form another sequence random variable. Under some other mild conditions, the asymptotic relations obtained are further applied to derive asymptotic estimate for ruin probabilities in a discrete time risk model.

Suggested Citation

  • Chen Yu & Zhang Weiping & Liu Jie, 2010. "Asymptotic Tail Probability of Randomly Weighted Sum of Dependent Heavy-Tailed Random Variables," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 4(2), pages 1-11, July.
  • Handle: RePEc:bpj:apjrin:v:4:y:2010:i:2:n:4
    DOI: 10.2202/2153-3792.1055
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/2153-3792.1055
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/2153-3792.1055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nyrhinen, Harri, 1999. "On the ruin probabilities in a general economic environment," Stochastic Processes and their Applications, Elsevier, vol. 83(2), pages 319-330, October.
    2. Nyrhinen, Harri, 2001. "Finite and infinite time ruin probabilities in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 265-285, April.
    3. Geluk, J.L. & De Vries, C.G., 2006. "Weighted sums of subexponential random variables and asymptotic dependence between returns on reinsurance equities," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 39-56, February.
    4. Xin-mei Shen & Zheng-yan Lin & Yi Zhang, 2009. "Uniform Estimate for Maximum of Randomly Weighted Sums with Applications to Ruin Theory," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 669-685, December.
    5. Chen, Yu & Su, Chun, 2006. "Finite time ruin probability with heavy-tailed insurance and financial risks," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1812-1820, October.
    6. Zhang, Yi & Shen, Xinmei & Weng, Chengguo, 2009. "Approximation of the tail probability of randomly weighted sums and applications," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 655-675, February.
    7. Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu Yan & Zhang Qinqin, 2015. "Uniform Estimate for Randomly Weighted Sums of Dependent Subexponential Random Variables," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 9(2), pages 303-318, July.
    2. Gao, Qingwu & Liu, Xijun, 2013. "Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1527-1538.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yang & Jiang, Tao & Wang, Kaiyong & Yuen, Kam C., 2020. "Interplay of financial and insurance risks in dependent discrete-time risk models," Statistics & Probability Letters, Elsevier, vol. 162(C).
    2. Zhang, Yi & Shen, Xinmei & Weng, Chengguo, 2009. "Approximation of the tail probability of randomly weighted sums and applications," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 655-675, February.
    3. Li, Jinzhu, 2018. "On the joint tail behavior of randomly weighted sums of heavy-tailed random variables," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 40-53.
    4. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    5. Sun, Ying & Wei, Li, 2014. "The finite-time ruin probability with heavy-tailed and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 178-183.
    6. Yang, Yingying & Hu, Shuhe & Wu, Tao, 2011. "The tail probability of the product of dependent random variables from max-domains of attraction," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1876-1882.
    7. Yuchao Dong & Jérôme Spielmann, 2020. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Post-Print hal-02170829, HAL.
    8. Nyrhinen, Harri, 2007. "Convex large deviation rate functions under mixtures of linear transformations, with an application to ruin theory," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 947-959, July.
    9. Xin-mei Shen & Zheng-yan Lin & Yi Zhang, 2009. "Uniform Estimate for Maximum of Randomly Weighted Sums with Applications to Ruin Theory," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 669-685, December.
    10. Cai, Jun & Dickson, David C.M., 2004. "Ruin probabilities with a Markov chain interest model," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 513-525, December.
    11. Qu, Zhihui & Chen, Yu, 2013. "Approximations of the tail probability of the product of dependent extremal random variables and applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 169-178.
    12. Jaunė, Eglė & Šiaulys, Jonas, 2022. "Asymptotic risk decomposition for regularly varying distributions with tail dependence," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    13. Yuchao Dong & J'er^ome Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Papers 1907.01828, arXiv.org, revised Feb 2020.
    14. Yuchao Dong & Jérôme Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Working Papers hal-02170829, HAL.
    15. Yang Yang & Shuang Liu & Kam Chuen Yuen, 2022. "Second-Order Tail Behavior for Stochastic Discounted Value of Aggregate Net Losses in a Discrete-Time Risk Model," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2600-2621, December.
    16. Jaakko Lehtomaa, 2015. "Asymptotic Behaviour of Ruin Probabilities in a General Discrete Risk Model Using Moment Indices," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1380-1405, December.
    17. Eckert, Johanna & Gatzert, Nadine, 2018. "Risk- and value-based management for non-life insurers under solvency constraints," European Journal of Operational Research, Elsevier, vol. 266(2), pages 761-774.
    18. Wang, Yinfeng & Yin, Chuancun, 2010. "Approximation for the ruin probabilities in a discrete time risk model with dependent risks," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1335-1342, September.
    19. Chen, Yu & Su, Chun, 2006. "Finite time ruin probability with heavy-tailed insurance and financial risks," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1812-1820, October.
    20. Tang, Qihe & Vernic, Raluca, 2007. "The impact on ruin probabilities of the association structure among financial risks," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1522-1525, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:apjrin:v:4:y:2010:i:2:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.