IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v49y2022i2p525-541.html
   My bibliography  Save this article

Efficiency of naive estimators for accelerated failure time models under length‐biased sampling

Author

Listed:
  • Pourab Roy
  • Jason P. Fine
  • Michael R. Kosorok

Abstract

In prevalent cohort studies where subjects are recruited at a cross‐section, the time to an event may be subject to length‐biased sampling, with the observed data being either the forward recurrence time, or the backward recurrence time, or their sum. In the regression setting, assuming a semiparametric accelerated failure time model for the underlying event time, where the intercept parameter is absorbed into the nuisance parameter, it has been shown that the model remains invariant under these observed data setups and can be fitted using standard methodology for accelerated failure time model estimation, ignoring the length bias. However, the efficiency of these estimators is unclear, owing to the fact that the observed covariate distribution, which is also length biased, may contain information about the regression parameter in the accelerated life model. We demonstrate that if the true covariate distribution is completely unspecified, then the naive estimator based on the conditional likelihood given the covariates is fully efficient for the slope.

Suggested Citation

  • Pourab Roy & Jason P. Fine & Michael R. Kosorok, 2022. "Efficiency of naive estimators for accelerated failure time models under length‐biased sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 525-541, June.
  • Handle: RePEc:bla:scjsta:v:49:y:2022:i:2:p:525-541
    DOI: 10.1111/sjos.12526
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12526
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zeng, Donglin & Lin, D.Y., 2007. "Efficient Estimation for the Accelerated Failure Time Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1387-1396, December.
    2. Niels Keiding & Oluf K. Højbjerg Hansen & Ditte Nørbo Sørensen & Rémy Slama, 2012. "The Current Duration Approach to Estimating Time to Pregnancy," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(2), pages 185-204, June.
    3. Keiding, Niels & Fine, Jason P. & Hansen, Oluf H. & Slama, Rémy, 2011. "Accelerated failure time regression for backward recurrence times and current durations," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 724-729, July.
    4. Niels Keiding & Katrine Lykke Albertsen & Helene Charlotte Rytgaard & Anne Lyngholm Sørensen, 2019. "Prevalent cohort studies and unobserved heterogeneity," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 712-738, October.
    5. Micha Mandel & Ya'akov Ritov, 2010. "The Accelerated Failure Time Model Under Biased Sampling," Biometrics, The International Biometric Society, vol. 66(4), pages 1306-1308, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    2. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    3. Niels Keiding & Katrine Lykke Albertsen & Helene Charlotte Rytgaard & Anne Lyngholm Sørensen, 2019. "Prevalent cohort studies and unobserved heterogeneity," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 712-738, October.
    4. J. H. McVittie & D. B. Wolfson & D. A. Stephens, 2020. "Parametric modelling of prevalent cohort data with uncertainty in the measurement of the initial onset date," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 389-401, April.
    5. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    6. Xu, Linzhi & Zhang, Jiajia, 2010. "Multiple imputation method for the semiparametric accelerated failure time mixture cure model," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1808-1816, July.
    7. Zhang, Jiajia & Peng, Yingwei, 2009. "Crossing hazard functions in common survival models," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2124-2130, October.
    8. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    9. Fan, Caiyun & Lu, Wenbin & Zhou, Yong, 2021. "Testing error heterogeneity in censored linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    10. Lea Kats & Malka Gorfine, 2023. "An accelerated failure time regression model for illness–death data: A frailty approach," Biometrics, The International Biometric Society, vol. 79(4), pages 3066-3081, December.
    11. Yifei Sun & Kwun Chuen Gary Chan & Jing Qin, 2018. "Simple and fast overidentified rank estimation for right†censored length†biased data and backward recurrence time," Biometrics, The International Biometric Society, vol. 74(1), pages 77-85, March.
    12. Ying Ding & Bin Nan, 2015. "Estimating Mean Survival Time: When is it Possible?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 397-413, June.
    13. Cheng Zheng & Ying Qing Chen, 2020. "On a Shape-Invariant Hazard Regression Model with application to an HIV Prevention Study of Mother-to-Child Transmission," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 340-352, December.
    14. Yuanshan Wu & Guosheng Yin, 2013. "Cure Rate Quantile Regression for Censored Data With a Survival Fraction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1517-1531, December.
    15. Fei Gao & Donglin Zeng & Dan‐Yu Lin, 2017. "Semiparametric estimation of the accelerated failure time model with partly interval‐censored data," Biometrics, The International Biometric Society, vol. 73(4), pages 1161-1168, December.
    16. Lili Yu & Liang Liu & Ding-Geng(Din) Chen, 2013. "Weighted Least-Squares Method for Right-Censored Data in Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 69(2), pages 358-365, June.
    17. Jing Ning & Jing Qin & Yu Shen, 2014. "Score Estimating Equations from Embedded Likelihood Functions Under Accelerated Failure Time Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1625-1635, December.
    18. Zou, Yubo & Zhang, Jiajia & Qin, Guoyou, 2011. "A semiparametric accelerated failure time partial linear model and its application to breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1479-1487, March.
    19. Weining Shen & Jing Ning & Ying Yuan & Anna S. Lok & Ziding Feng, 2018. "Model†free scoring system for risk prediction with application to hepatocellular carcinoma study," Biometrics, The International Biometric Society, vol. 74(1), pages 239-248, March.
    20. Jung-Yu Cheng & Shinn-Jia Tzeng, 2014. "Quantile regression of right-censored length-biased data using the Buckley–James-type method," Computational Statistics, Springer, vol. 29(6), pages 1571-1592, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:49:y:2022:i:2:p:525-541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.