IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v36y2009i4p839-853.html
   My bibliography  Save this article

Hybrid Samplers for Ill‐Posed Inverse Problems

Author

Listed:
  • RADU HERBEI
  • IAN W. McKEAGUE

Abstract

. In the Bayesian approach to ill‐posed inverse problems, regularization is imposed by specifying a prior distribution on the parameters of interest and Markov chain Monte Carlo samplers are used to extract information about its posterior distribution. The aim of this paper is to investigate the convergence properties of the random‐scan random‐walk Metropolis (RSM) algorithm for posterior distributions in ill‐posed inverse problems. We provide an accessible set of sufficient conditions, in terms of the observational model and the prior, to ensure geometric ergodicity of RSM samplers of the posterior distribution. We illustrate how these conditions can be checked in an application to the inversion of oceanographic tracer data.

Suggested Citation

  • RADU HERBEI & IAN W. McKEAGUE, 2009. "Hybrid Samplers for Ill‐Posed Inverse Problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 839-853, December.
  • Handle: RePEc:bla:scjsta:v:36:y:2009:i:4:p:839-853
    DOI: 10.1111/j.1467-9469.2009.00649.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2009.00649.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2009.00649.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jarner, Søren Fiig & Hansen, Ernst, 2000. "Geometric ergodicity of Metropolis algorithms," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 341-361, February.
    2. Axel Gandy & Uwe Jensen, 2005. "On Goodness‐of‐Fit Tests for Aalen's Additive Risk Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 425-445, September.
    3. H. Haario & M. Laine & M. Lehtinen & E. Saksman & J. Tamminen, 2004. "Markov chain Monte Carlo methods for high dimensional inversion in remote sensing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 591-607, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radu Herbei & L. Mark Berliner, 2014. "Estimating Ocean Circulation: An MCMC Approach With Approximated Likelihoods via the Bernoulli Factory," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 944-954, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jenny Brynjarsdottir & Jonathan Hobbs & Amy Braverman & Lukas Mandrake, 2018. "Optimal Estimation Versus MCMC for $$\mathrm{{CO}}_{2}$$ CO 2 Retrievals," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 297-316, June.
    2. Fort, G. & Moulines, E., 2003. "Polynomial ergodicity of Markov transition kernels," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 57-99, January.
    3. Chris Sherlock & Anthony Lee, 2022. "Variance Bounding of Delayed-Acceptance Kernels," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2237-2260, September.
    4. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    5. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    6. O. F. Christensen & J. Møller & R. P. Waagepetersen, 2001. "Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models," Methodology and Computing in Applied Probability, Springer, vol. 3(3), pages 309-327, September.
    7. Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
    8. Yasushi Ota & Yu Jiang & Daiki Maki, 2022. "Parameters identification for an inverse problem arising from a binary option using a Bayesian inference approach," Papers 2205.11012, arXiv.org.
    9. Lacour, Claire, 2008. "Nonparametric estimation of the stationary density and the transition density of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 232-260, February.
    10. Denis Belomestny & Leonid Iosipoi, 2019. "Fourier transform MCMC, heavy tailed distributions and geometric ergodicity," Papers 1909.00698, arXiv.org, revised Dec 2019.
    11. Fort, Gersende & Moulines, Eric, 2000. "V-Subgeometric ergodicity for a Hastings-Metropolis algorithm," Statistics & Probability Letters, Elsevier, vol. 49(4), pages 401-410, October.
    12. Belomestny, Denis & Iosipoi, Leonid, 2021. "Fourier transform MCMC, heavy-tailed distributions, and geometric ergodicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 351-363.
    13. Medina-Aguayo, Felipe & Rudolf, Daniel & Schweizer, Nikolaus, 2020. "Perturbation bounds for Monte Carlo within Metropolis via restricted approximations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2200-2227.
    14. David A. Spade, 2020. "Geometric ergodicity of a Metropolis-Hastings algorithm for Bayesian inference of phylogenetic branch lengths," Computational Statistics, Springer, vol. 35(4), pages 2043-2076, December.
    15. Samuel Livingstone & Giacomo Zanella, 2022. "The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 496-523, April.
    16. Vihola, Matti, 2011. "On the stability and ergodicity of adaptive scaling Metropolis algorithms," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2839-2860.
    17. Jianwen Cai & Donglin Zeng, 2011. "Additive Mixed Effect Model for Clustered Failure Time Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1340-1351, December.
    18. Franks, Jordan & Vihola, Matti, 2020. "Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6157-6183.
    19. Yves Atchade, 2005. "An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift," RePAd Working Paper Series LRSP-WP1, Département des sciences administratives, UQO.
    20. Kamatani, Kengo, 2020. "Random walk Metropolis algorithm in high dimension with non-Gaussian target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 297-327.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:36:y:2009:i:4:p:839-853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.