IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v31y2004i1p63-78.html
   My bibliography  Save this article

Root "n" consistent and optimal density estimators for moving average processes

Author

Listed:
  • Anton Schick
  • Wolfgang Wefelmeyer

Abstract

The marginal density of a first order moving average process can be written as a convolution of two innovation densities. Saavedra & Cao [Can. J. Statist. (2000), 28, 799] propose to estimate the marginal density by plugging in kernel density estimators for the innovation densities, based on estimated innovations. They obtain that for an appropriate choice of bandwidth the variance of their estimator decreases at the rate 1/"n". Their estimator can be interpreted as a specific "U"-statistic. We suggest a slightly simplified "U"-statistic as estimator of the marginal density, prove that it is asymptotically normal at the same rate, and describe the asymptotic variance explicitly. We show that the estimator is asymptotically efficient if no structural assumptions are made on the innovation density. For innovation densities known to have mean zero or to be symmetric, we describe improvements of our estimator which are again asymptotically efficient. Copyright Board of the Foundation of the Scandinavian Journal of Statistics 2004.

Suggested Citation

  • Anton Schick & Wolfgang Wefelmeyer, 2004. "Root "n" consistent and optimal density estimators for moving average processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(1), pages 63-78.
  • Handle: RePEc:bla:scjsta:v:31:y:2004:i:1:p:63-78
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9469.2004.00373.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dabo-Niang, Sophie & Francq, Christian & Zakoian, Jean-Michel, 2009. "Combining parametric and nonparametric approaches for more efficient time series prediction," MPRA Paper 16893, University Library of Munich, Germany.
    2. Anton Schick & Wolfgang Wefelmeyer, 2008. "Root-n consistency in weighted L 1 -spaces for density estimators of invertible linear processes," Statistical Inference for Stochastic Processes, Springer, vol. 11(3), pages 281-310, October.
    3. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    4. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2012. "n-uniformly consistent density estimation in nonparametric regression models," Journal of Econometrics, Elsevier, vol. 167(2), pages 305-316.
    5. Li, Shuo & Tu, Yundong, 2016. "n-consistent density estimation in semiparametric regression models," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 91-109.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:31:y:2004:i:1:p:63-78. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.