IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v70y2021i4p815-834.html
   My bibliography  Save this article

Phase I clinical trials in adoptive T‐cell therapies

Author

Listed:
  • Sean M. Devlin
  • Alexia Iasonos
  • John O’Quigley

Abstract

We develop three approaches to phase I dose finding designs for engineered T cells in oncology. Our goal is to address a very particular difficulty in this clinical setting: an inability to fully administer the dose allocated to some patients. Current designs can be biased as a result of this incomplete information being ignored or discarded from the analysis. The performance of the three proposed solutions is largely similar, and all offer an advantage over the currently used design. One of the three methods is supported by theoretical study, and we provide some new results on this approach.

Suggested Citation

  • Sean M. Devlin & Alexia Iasonos & John O’Quigley, 2021. "Phase I clinical trials in adoptive T‐cell therapies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 815-834, August.
  • Handle: RePEc:bla:jorssc:v:70:y:2021:i:4:p:815-834
    DOI: 10.1111/rssc.12485
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12485
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nolan A. Wages & Mark R. Conaway & John O'Quigley, 2011. "Continual Reassessment Method for Partial Ordering," Biometrics, The International Biometric Society, vol. 67(4), pages 1555-1563, December.
    2. Xuelin Huang & Swati Biswas & Yasuhiro Oki & Jean-Pierre Issa & Donald A. Berry, 2007. "A Parallel Phase I/II Clinical Trial Design for Combination Therapies," Biometrics, The International Biometric Society, vol. 63(2), pages 429-436, June.
    3. M. Clertant & J. O’Quigley, 2017. "Semiparametric dose finding methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1487-1508, November.
    4. John O'Quigley & Michael D. Hughes & Terry Fenton, 2001. "Dose-Finding Designs for HIV Studies," Biometrics, The International Biometric Society, vol. 57(4), pages 1018-1029, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunyan Cai & Ying Yuan & Yuan Ji, 2014. "A Bayesian dose finding design for oncology clinical trials of combinational biological agents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 159-173, January.
    2. Pavel Mozgunov & Thomas Jaki, 2020. "An information theoretic approach for selecting arms in clinical trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1223-1247, December.
    3. Guosheng Yin & Ying Yuan, 2009. "Bayesian dose finding in oncology for drug combinations by copula regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 211-224, May.
    4. Koichi Hashizume & Jun Tshuchida & Takashi Sozu, 2022. "Flexible use of copula‐type model for dose‐finding in drug combination clinical trials," Biometrics, The International Biometric Society, vol. 78(4), pages 1651-1661, December.
    5. Beibei Guo & Suyu Liu, 2018. "Optimal Benchmark for Evaluating Drug-Combination Dose-Finding Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 184-201, April.
    6. B. Nebiyou Bekele & Yu Shen, 2005. "A Bayesian Approach to Jointly Modeling Toxicity and Biomarker Expression in a Phase I/II Dose-Finding Trial," Biometrics, The International Biometric Society, vol. 61(2), pages 343-354, June.
    7. Nolan A. Wages & Mark R. Conaway & John O'Quigley, 2011. "Continual Reassessment Method for Partial Ordering," Biometrics, The International Biometric Society, vol. 67(4), pages 1555-1563, December.
    8. Guosheng Yin & Ying Yuan, 2009. "A Latent Contingency Table Approach to Dose Finding for Combinations of Two Agents," Biometrics, The International Biometric Society, vol. 65(3), pages 866-875, September.
    9. José L. Jiménez & Mourad Tighiouart, 2022. "Combining cytotoxic agents with continuous dose levels in seamless phase I‐II clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1996-2013, November.
    10. Yuxi Tao & Junlin Liu & Zhihui Li & Jinguan Lin & Tao Lu & Fangrong Yan, 2013. "Dose-Finding Based on Bivariate Efficacy-Toxicity Outcome Using Archimedean Copula," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-6, November.
    11. Pavel Mozgunov & Rochelle Knight & Helen Barnett & Thomas Jaki, 2021. "Using an Interaction Parameter in Model-Based Phase I Trials for Combination Treatments? A Simulation Study," IJERPH, MDPI, vol. 18(1), pages 1-19, January.
    12. Monia Ezzalfani, 2019. "How to design a dose-finding study on combined agents: Choice of design and development of R functions," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-24, November.
    13. Nolan A. Wages & Craig L. Slingluff, 2020. "Flexible Phase I–II Design for Partially Ordered Regimens with Application to Therapeutic Cancer Vaccines," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 104-123, July.
    14. Márcio A. Diniz & Sungjin Kim & Mourad Tighiouart, 2020. "A Bayesian Adaptive Design in Cancer Phase I Trials Using Dose Combinations with Ordinal Toxicity Grades," Stats, MDPI, vol. 3(3), pages 1-18, July.
    15. Bethany Jablonski Horton & Nolan A. Wages & Ryan D. Gentzler, 2021. "Bayesian Design for Identifying Cohort-Specific Optimal Dose Combinations Based on Multiple Endpoints: Application to a Phase I Trial in Non-Small Cell Lung Cancer," IJERPH, MDPI, vol. 18(21), pages 1-10, October.
    16. Beibei Guo & Elizabeth Garrett‐Mayer & Suyu Liu, 2021. "A Bayesian phase I/II design for cancer clinical trials combining an immunotherapeutic agent with a chemotherapeutic agent," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1210-1229, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:4:p:815-834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.