IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v3y2020i3p17-238d386157.html
   My bibliography  Save this article

A Bayesian Adaptive Design in Cancer Phase I Trials Using Dose Combinations with Ordinal Toxicity Grades

Author

Listed:
  • Márcio A. Diniz

    (Biostatistics and Bioinformatics Research Center, Samuel Oschin Compreenhensive Cancer Institute, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd, Los Angeles, CA 90069, USA)

  • Sungjin Kim

    (Biostatistics and Bioinformatics Research Center, Samuel Oschin Compreenhensive Cancer Institute, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd, Los Angeles, CA 90069, USA)

  • Mourad Tighiouart

    (Biostatistics and Bioinformatics Research Center, Samuel Oschin Compreenhensive Cancer Institute, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd, Los Angeles, CA 90069, USA)

Abstract

We propose a Bayesian adaptive design for early phase drug combination cancer trials incorporating ordinal grade of toxicities. Parametric models are used to describe the relationship between the dose combinations and the probabilities of the ordinal toxicities under the proportional odds assumption. Trial design proceeds by treating cohorts of two patients simultaneously receiving different dose combinations. Specifically, at each stage of the trial, we seek the dose of one agent by minimizing the Bayes risk with respect to a loss function given the current dose of the other agent. We consider two types of loss functions corresponding to the Continual Reassessment Method (CRM) and Escalation with Overdose Control (EWOC). At the end of the trial, we estimate the MTD curve as a function of Bayes estimates of the model parameters. We evaluate design operating characteristics in terms of safety of the trial and percent of dose recommendation at dose combination neighborhoods around the true MTD by comparing this design to the one that uses a binary indicator of DLT. The methodology is further adapted to the case of a pre-specified discrete set of dose combinations.

Suggested Citation

  • Márcio A. Diniz & Sungjin Kim & Mourad Tighiouart, 2020. "A Bayesian Adaptive Design in Cancer Phase I Trials Using Dose Combinations with Ordinal Toxicity Grades," Stats, MDPI, vol. 3(3), pages 1-18, July.
  • Handle: RePEc:gam:jstats:v:3:y:2020:i:3:p:17-238:d:386157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/3/3/17/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/3/3/17/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Z. Yuan & R. Chappell & H. Bailey, 2007. "The Continual Reassessment Method for Multiple Toxicity Grades: A Bayesian Quasi-Likelihood Approach," Biometrics, The International Biometric Society, vol. 63(1), pages 173-179, March.
    2. Mourad Tighiouart & Galen Cook-Wiens & André Rogatko, 2012. "Escalation with Overdose Control Using Ordinal Toxicity Grades for Cancer Phase I Clinical Trials," Journal of Probability and Statistics, Hindawi, vol. 2012, pages 1-18, October.
    3. Nolan A. Wages & Mark R. Conaway & John O'Quigley, 2011. "Continual Reassessment Method for Partial Ordering," Biometrics, The International Biometric Society, vol. 67(4), pages 1555-1563, December.
    4. Bekele, B. Nebiyou & Thall, Peter F., 2004. "Dose-Finding Based on Multiple Toxicities in a Soft Tissue Sarcoma Trial," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 26-35, January.
    5. Guosheng Yin & Ying Yuan, 2009. "A Latent Contingency Table Approach to Dose Finding for Combinations of Two Agents," Biometrics, The International Biometric Society, vol. 65(3), pages 866-875, September.
    6. Guosheng Yin & Ying Yuan, 2009. "Bayesian dose finding in oncology for drug combinations by copula regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 211-224, May.
    7. Kai Wang & Anastasia Ivanova, 2005. "Two-Dimensional Dose Finding in Discrete Dose Space," Biometrics, The International Biometric Society, vol. 61(1), pages 217-222, March.
    8. Mourad Tighiouart, 2019. "Two‐stage design for phase I–II cancer clinical trials using continuous dose combinations of cytotoxic agents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(1), pages 235-250, January.
    9. Peter F. Thall & Randall E. Millikan & Peter Mueller & Sang-Joon Lee, 2003. "Dose-Finding with Two Agents in Phase I Oncology Trials," Biometrics, The International Biometric Society, vol. 59(3), pages 487-496, September.
    10. Thomas M. Braun & Shufang Wang, 2010. "A Hierarchical Bayesian Design for Phase I Trials of Novel Combinations of Cancer Therapeutic Agents," Biometrics, The International Biometric Society, vol. 66(3), pages 805-812, September.
    11. B. Nebiyou Bekele & Yisheng Li & Yuan Ji, 2010. "Risk-Group-Specific Dose Finding Based on an Average Toxicity Score," Biometrics, The International Biometric Society, vol. 66(2), pages 541-548, June.
    12. Mauro Gasparini, 2013. "General classes of multiple binary regression models in dose finding problems for combination therapies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(1), pages 115-133, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunyan Cai & Ying Yuan & Yuan Ji, 2014. "A Bayesian dose finding design for oncology clinical trials of combinational biological agents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 159-173, January.
    2. Beibei Guo & Suyu Liu, 2018. "Optimal Benchmark for Evaluating Drug-Combination Dose-Finding Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 184-201, April.
    3. Beibei Guo & Elizabeth Garrett‐Mayer & Suyu Liu, 2021. "A Bayesian phase I/II design for cancer clinical trials combining an immunotherapeutic agent with a chemotherapeutic agent," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1210-1229, November.
    4. Koichi Hashizume & Jun Tshuchida & Takashi Sozu, 2022. "Flexible use of copula‐type model for dose‐finding in drug combination clinical trials," Biometrics, The International Biometric Society, vol. 78(4), pages 1651-1661, December.
    5. Nolan A. Wages & Mark R. Conaway & John O'Quigley, 2011. "Continual Reassessment Method for Partial Ordering," Biometrics, The International Biometric Society, vol. 67(4), pages 1555-1563, December.
    6. Nadine Houede & Peter F. Thall & Hoang Nguyen & Xavier Paoletti & Andrew Kramar, 2010. "Utility-Based Optimization of Combination Therapy Using Ordinal Toxicity and Efficacy in Phase I/II Trials," Biometrics, The International Biometric Society, vol. 66(2), pages 532-540, June.
    7. Guosheng Yin & Ying Yuan, 2009. "A Latent Contingency Table Approach to Dose Finding for Combinations of Two Agents," Biometrics, The International Biometric Society, vol. 65(3), pages 866-875, September.
    8. B. Nebiyou Bekele & Yisheng Li & Yuan Ji, 2010. "Risk-Group-Specific Dose Finding Based on an Average Toxicity Score," Biometrics, The International Biometric Society, vol. 66(2), pages 541-548, June.
    9. Guosheng Yin & Ying Yuan, 2009. "Bayesian dose finding in oncology for drug combinations by copula regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 211-224, May.
    10. Xiaobin Yang & Keying Ye, 2012. "A Phase I Dose-_finding Study Based on Polychotomous Toxicity Responses Toxicity issue is always a main concern in phase I study and it is commonly categorized to multiple grades. In this study, the c," Working Papers 0004, College of Business, University of Texas at San Antonio.
    11. Anastasia Ivanova & Se Hee Kim, 2009. "Dose Finding for Continuous and Ordinal Outcomes with a Monotone Objective Function: A Unified Approach," Biometrics, The International Biometric Society, vol. 65(1), pages 307-315, March.
    12. Ying Kuen Cheung, 2014. "Simple benchmark for complex dose finding studies," Biometrics, The International Biometric Society, vol. 70(2), pages 389-397, June.
    13. Xuelin Huang & Swati Biswas & Yasuhiro Oki & Jean-Pierre Issa & Donald A. Berry, 2007. "A Parallel Phase I/II Clinical Trial Design for Combination Therapies," Biometrics, The International Biometric Society, vol. 63(2), pages 429-436, June.
    14. Hengzhen Huang & Hong†Bin Fang & Ming T. Tan, 2018. "Experimental design for multi†drug combination studies using signaling networks," Biometrics, The International Biometric Society, vol. 74(2), pages 538-547, June.
    15. Mauro Gasparini & Stuart Bailey & Beat Neuenschwander, 2010. "Bayesian dose finding in oncology for drug combinations by copula regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 543-544, May.
    16. Pavel Mozgunov & Rochelle Knight & Helen Barnett & Thomas Jaki, 2021. "Using an Interaction Parameter in Model-Based Phase I Trials for Combination Treatments? A Simulation Study," IJERPH, MDPI, vol. 18(1), pages 1-19, January.
    17. Monia Ezzalfani, 2019. "How to design a dose-finding study on combined agents: Choice of design and development of R functions," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-24, November.
    18. Thomas M. Braun & Shufang Wang, 2010. "A Hierarchical Bayesian Design for Phase I Trials of Novel Combinations of Cancer Therapeutic Agents," Biometrics, The International Biometric Society, vol. 66(3), pages 805-812, September.
    19. Sean M. Devlin & Alexia Iasonos & John O’Quigley, 2021. "Phase I clinical trials in adoptive T‐cell therapies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 815-834, August.
    20. Thomas M. Braun, 2018. "Motivating sample sizes in adaptive Phase I trials via Bayesian posterior credible intervals," Biometrics, The International Biometric Society, vol. 74(3), pages 1065-1071, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:3:y:2020:i:3:p:17-238:d:386157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.