IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v80y2018i1p85-112.html
   My bibliography  Save this article

Optimal a priori balance in the design of controlled experiments

Author

Listed:
  • Nathan Kallus

Abstract

We develop a unified theory of designs for controlled experiments that balance baseline covariates a priori (before treatment and before randomization) using the framework of minimax variance and a new method called kernel allocation. We show that any notion of a priori balance must go hand in hand with a notion of structure, since with no structure on the dependence of outcomes on baseline covariates complete randomization (no special covariate balance) is always minimax optimal. Restricting the structure of dependence, either parametrically or non‐parametrically, gives rise to certain covariate imbalance metrics and optimal designs. This recovers many popular imbalance metrics and designs previously developed ad hoc, including randomized block designs, pairwise‐matched allocation and rerandomization. We develop a new design method called kernel allocation based on the optimal design when structure is expressed by using kernels, which can be parametric or non‐parametric. Relying on modern optimization methods, kernel allocation, which ensures nearly perfect covariate balance without biasing estimates under model misspecification, offers sizable advantages in precision and power as demonstrated in a range of real and synthetic examples. We provide strong theoretical guarantees on variance, consistency and rates of convergence and develop special algorithms for design and hypothesis testing.

Suggested Citation

  • Nathan Kallus, 2018. "Optimal a priori balance in the design of controlled experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 85-112, January.
  • Handle: RePEc:bla:jorssb:v:80:y:2018:i:1:p:85-112
    DOI: 10.1111/rssb.12240
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12240
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Max Tabord-Meehan, 2018. "Stratification Trees for Adaptive Randomization in Randomized Controlled Trials," Papers 1806.05127, arXiv.org, revised Jul 2022.
    2. Bai, Yuehao, 2023. "Why randomize? Minimax optimality under permutation invariance," Journal of Econometrics, Elsevier, vol. 232(2), pages 565-575.
    3. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:80:y:2018:i:1:p:85-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.