IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v88y2020i1p54-74.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Empirical Likelihood Approach for Aligning Information from Multiple Surveys

Author

Listed:
  • Yves G. Berger
  • Ewa Kabzińska

Abstract

When two surveys carried out separately in the same population have common variables, it might be desirable to adjust each survey's weights so that they give equal estimates for the common variables. This problem has been studied extensively and has often been referred to as alignment or numerical consistency. We develop a design‐based empirical likelihood approach for alignment and estimation of complex parameters defined by estimating equations. We focus on a general case when a single set of adjusted weights, which can be applied to both common and non‐common variables, is produced for each survey. The main contribution of the paper is to show that the impirical log‐likelihood ratio statistic is pivotal in the presence of alignment constraints. This pivotal statistic can be used to test hypotheses and derive confidence regions. Hence, the empirical likelihood approach proposed for alignment possesses the self‐normalisation property, under a design‐based approach. The proposed approach accommodates large sampling fractions, stratification and population level auxiliary information. It is particularly well suited for inference about small domains, when data are skewed. It includes implicit adjustments when the samples considerably differ in size. The confidence regions are constructed without the need for variance estimates, joint‐inclusion probabilities, linearisation and re‐sampling.

Suggested Citation

  • Yves G. Berger & Ewa Kabzińska, 2020. "Empirical Likelihood Approach for Aligning Information from Multiple Surveys," International Statistical Review, International Statistical Institute, vol. 88(1), pages 54-74, April.
  • Handle: RePEc:bla:istatr:v:88:y:2020:i:1:p:54-74
    DOI: 10.1111/insr.12337
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12337
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12337?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takis Merkouris, 2004. "Combining Independent Regression Estimators From Multiple Surveys," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1131-1139, December.
    2. J. Chen, 2002. "Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys," Biometrika, Biometrika Trust, vol. 89(1), pages 230-237, March.
    3. Jae Kwang Kim & J. N. K. Rao, 2012. "Combining data from two independent surveys: a model-assisted approach," Biometrika, Biometrika Trust, vol. 99(1), pages 85-100.
    4. Song Chen & Ingrid Van Keilegom, 2009. "A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 415-447, November.
    5. Sanjay Chaudhuri & Mark S. Handcock & Michael S. Rendall, 2008. "Generalized linear models incorporating population level information: an empirical‐likelihood‐based approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 311-328, April.
    6. Berger, Yves G. & Muñoz, Juan F. & Rancourt, Eric, 2009. "Variance estimation of survey estimates calibrated on estimated control totals--An application to the extended regression estimator and the regression composite estimator," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2596-2604, May.
    7. Takis Merkouris, 2010. "Combining information from multiple surveys by using regression for efficient small domain estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 27-48, January.
    8. Wayne A. Fuller, 2009. "Some design properties of a rejective sampling procedure," Biometrika, Biometrika Trust, vol. 96(4), pages 933-944.
    9. Song Chen & Ingrid Van Keilegom, 2009. "Rejoinder on: A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 468-474, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Mar Rueda & Maria Giovanna Ranalli & Antonio Arcos & David Molina, 2021. "Population empirical likelihood estimation in dual frame surveys," Statistical Papers, Springer, vol. 62(5), pages 2473-2490, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    2. Seho Park & Jae Kwang Kim & Diana Stukel, 2017. "A measurement error model approach to survey data integration: combining information from two surveys," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 345-357, December.
    3. Alessio Guandalini & Yves Tillé, 2017. "Design-based Estimators Calibrated on Estimated Totals from Multiple Surveys," International Statistical Review, International Statistical Institute, vol. 85(2), pages 250-269, August.
    4. Berger, Yves G. & Patilea, Valentin, 2022. "A semi-parametric empirical likelihood approach for conditional estimating equations under endogenous selection," Econometrics and Statistics, Elsevier, vol. 24(C), pages 151-163.
    5. Oǧuz-Alper, Melike & Berger, Yves G., 2020. "Modelling multilevel data under complex sampling designs: An empirical likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    6. Paolo Righi, 2016. "Estimation procedure and inference for component totals of the economic aggregates in the “Frame SBS”," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 18(1), pages 83-97.
    7. Zhong, Ping-Shou & Chen, Sixia, 2014. "Jackknife empirical likelihood inference with regression imputation and survey data," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 193-205.
    8. Jae Kwang Kim & Zhonglei Wang & Zhengyuan Zhu & Nathan B. Cruze, 2018. "Combining Survey and Non-survey Data for Improved Sub-area Prediction Using a Multi-level Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 175-189, June.
    9. Yves G. Berger, 2020. "An empirical likelihood approach under cluster sampling with missing observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 91-121, February.
    10. Y. G. Berger & O. De La Riva Torres, 2016. "Empirical likelihood confidence intervals for complex sampling designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 319-341, March.
    11. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    12. Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
    13. Weihua Zhao & Riquan Zhang & Yukun Liu & Jicai Liu, 2015. "Empirical likelihood based modal regression," Statistical Papers, Springer, vol. 56(2), pages 411-430, May.
    14. Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015. "Empirical likelihood for regression discontinuity design," Journal of Econometrics, Elsevier, vol. 186(1), pages 94-112.
    15. Karun Adusumilli & Taisuke Otsu, 2017. "Empirical Likelihood for Random Sets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1064-1075, July.
    16. repec:cep:stiecm:/2014/574 is not listed on IDEAS
    17. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    18. Li, Minqiang & Peng, Liang & Qi, Yongcheng, 2011. "Reduce computation in profile empirical likelihood method," MPRA Paper 33744, University Library of Munich, Germany.
    19. Zhang, Rongmao & Peng, Liang & Qi, Yongcheng, 2012. "Jackknife-blockwise empirical likelihood methods under dependence," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 56-72, February.
    20. Tang, Cheng Yong & Leng, Chenlei, 2012. "An empirical likelihood approach to quantile regression with auxiliary information," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 29-36.
    21. Denis Devaud & Yves Tillé, 2019. "Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1033-1065, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:88:y:2020:i:1:p:54-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.