IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v76y2008i2p228-246.html
   My bibliography  Save this article

Discovering Statistically Significant Periodic Gene Expression

Author

Listed:
  • Jie Chen
  • Kuang‐Chao Chang

Abstract

One frequent application of microarray experiments is in the study of monitoring gene activities in a cell during cell cycle or cell division. High throughput gene expression time series data are produced from such microarray experiments. A new computational and statistical challenge for analyzing such gene expression time course data, resulting from cell cycle microarray experiments, is to discover genes that are statistically significantly periodically expressed during the cell cycle. Such a challenge occurs due to the large number of genes that are simultaneously measured, a moderate to small number of measurements per gene taken at different time points and high levels of non‐normal random noises inherited in the data. Computational and statistical approaches to discovery and validation of periodic patterns of gene expression are, however, very limited. A good method of analysis should be able to search for significant periodic genes with a controlled family‐wise error (FWE) rate or controlled false discovery rate (FDR) and any other variations of FDR, when all gene expression profiles are compared simultaneously. In this review paper, a brief summary of currently used methods in searching for periodic genes will be given. In particular, two methods will be surveyed in details. The first one is a novel statistical inference approach, the C & G Procedure that can be used to effectively detect statistically significantly periodically expressed genes when the gene expression is measured on evenly spaced time points. The second one is the Lomb–Scargle periodogram analysis, which can be used to discover periodic genes when the gene profiles are not measured on evenly spaced time points or when there are missing values in the profiles. The ultimate goal of this review paper is to give an expository of the two surveyed methods to researchers in related fields. Une application fréquente des expériences de microréseaux se trouve dans l'étude du suivi des activités du gène pendant le cycle cellulaire ou la division cellulaire. Des séries temporelles d'expression de gènes à haut débit sont produites à partir de telles expériences. Un nouveau défi, informatique et statistique, pour analyser de telles données temporelles d'expression génétique, résultant des expériences de microréseaux du cycle cellulaire, est de découvrir les gènes qui, statistiquement et significativement, sont exprimés périodiquement durant le cycle cellulaire. Un tel défi apparaît en raison du grand nombre de gènes mesurés simultanément, d'un nombre modéréà faible de mesures par gène prises à différents moments et de hauts niveaux de bruits aléatoires non normaux dans les données. Les approches quantitatives et statistiques pour la découverte et la validation des modèles périodiques d'expression génétique sont cependant très limitées. Une bonne méthode d'analyse devrait être capable de rechercher des gènes périodiques significatifs avec un taux d'erreur par famille (FWE) contrôlé, ou un taux de fausse découverte (FDR) contrôlé et d'autres variations de ce taux, quand tous les profils d'expression génétique sont comparés simultanément. Dans cet article récapitulatif, un bref résumé des méthodes actuellement utilisées pour la recherche des gènes périodiques sera donné. En particulier, deux méthodes seront analysées en détail. La première est une approche originale d'inférence statistique, la procédure C&G qui peut être utilisée pour détecter efficacement des gènes exprimés périodiquement, statistiquement et significativement, quand l'expression du gène est mesurée à des moments espacés uniformément. La seconde est l'analyse par périodogramme de Lomb‐Scargle, qui peut être utilisée pour découvrir des gènes périodiques quand les profils génétiques ne sont pas mesurés à des moments régulièrement espacés ou quand il y a des valeurs manquantes dans les profils. Le dernier objectif de cet article est d'exposer les deux méthodes aux chercheurs dans les champs concernés.

Suggested Citation

  • Jie Chen & Kuang‐Chao Chang, 2008. "Discovering Statistically Significant Periodic Gene Expression," International Statistical Review, International Statistical Institute, vol. 76(2), pages 228-246, August.
  • Handle: RePEc:bla:istatr:v:76:y:2008:i:2:p:228-246
    DOI: 10.1111/j.1751-5823.2008.00048.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2008.00048.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2008.00048.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Albert Goldbeter, 2002. "Computational approaches to cellular rhythms," Nature, Nature, vol. 420(6912), pages 238-245, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bottani, Samuel & Grammaticos, Basile, 2008. "A simple model of genetic oscillations through regulated degradation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1468-1482.
    2. Treenut Saithong & Kevin J Painter & Andrew J Millar, 2010. "Consistent Robustness Analysis (CRA) Identifies Biologically Relevant Properties of Regulatory Network Models," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-11, December.
    3. Wassim Abou-Jaoudé & Madalena Chaves & Jean-Luc Gouzé, 2011. "A Theoretical Exploration of Birhythmicity in the p53-Mdm2 Network," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-12, February.
    4. O. Slaby & S. Sager & O. S. Shaik & U. Kummer & D. Lebiedz, 2007. "Optimal control of self-organized dynamics in cellular signal transduction," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 13(5), pages 487-502, October.
    5. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    6. Šimonka, Vito & Fras, Maja & Gosak, Marko, 2015. "Stochastic simulation of the circadian rhythmicity in the SCN neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 1-10.
    7. Irene Otero-Muras & Julio R Banga, 2016. "Design Principles of Biological Oscillators through Optimization: Forward and Reverse Analysis," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-26, December.
    8. Hellweger, Ferdi L., 2008. "The role of inter-generation memory in diel phytoplankton division patterns," Ecological Modelling, Elsevier, vol. 212(3), pages 382-396.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:76:y:2008:i:2:p:228-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.