IDEAS home Printed from https://ideas.repec.org/a/bla/ijhplm/v36y2021i3p754-783.html
   My bibliography  Save this article

Suggesting a framework for preparedness against the pandemic outbreak based on medical informatics solutions: a thematic analysis

Author

Listed:
  • Marsa Gholamzadeh
  • Hamidreza Abtahi
  • Reza Safdari

Abstract

Background When an outbreak emerged, each country needs a coherent and preventive plan to deal with epidemics. In the era of technology, adopting informatics‐based solutions is essential. The main objective of this study is to propose a conceptual framework to provide a rapid and responsive surveillance system against pandemics. Methods A three‐step approach was employed in this research to develop a conceptual framework. These three steps comprise (1) literature review, (2) extracting and coding concepts, and determining main themes based on thematic analysis using ATLAS.ti® software, and (3) mapping concepts. Later, all of the results synthesized under expert consultation to design a conceptual framework based on the main themes and identified strategies related to medical informatics. Results In the literature review phase, 65 articles were identified as eligible studies for analysis. Through line by line coding in thematic analysis, more than 46 themes were extracted as potential foremost themes. Based on the key themes and strategies were employed by studies, the proposed framework designed in three main components. The most appropriate strategies that can be used in each section were identified based on the demands of each part and the available solutions. These solutions were employed in the final framework. Conclusion The presented model in this study can be the first step for a better understanding of the potential of medical informatics solutions in promoting epidemic disease management. It can be applied as a reference model for designing intelligent surveillance systems to prepare for probable future pandemics.

Suggested Citation

  • Marsa Gholamzadeh & Hamidreza Abtahi & Reza Safdari, 2021. "Suggesting a framework for preparedness against the pandemic outbreak based on medical informatics solutions: a thematic analysis," International Journal of Health Planning and Management, Wiley Blackwell, vol. 36(3), pages 754-783, May.
  • Handle: RePEc:bla:ijhplm:v:36:y:2021:i:3:p:754-783
    DOI: 10.1002/hpm.3106
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hpm.3106
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hpm.3106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Din, Anwarud & Khan, Amir & Baleanu, Dumitru, 2020. "Stationary distribution and extinction of stochastic coronavirus (COVID-19) epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zai-Yin He & Abderrahmane Abbes & Hadi Jahanshahi & Naif D. Alotaibi & Ye Wang, 2022. "Fractional-Order Discrete-Time SIR Epidemic Model with Vaccination: Chaos and Complexity," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
    2. Nikolaos P. Rachaniotis & Thomas K. Dasaklis & Filippos Fotopoulos & Platon Tinios, 2021. "A Two-Phase Stochastic Dynamic Model for COVID-19 Mid-Term Policy Recommendations in Greece: A Pathway towards Mass Vaccination," IJERPH, MDPI, vol. 18(5), pages 1-21, March.
    3. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Saha, Pritam & Mondal, Bapin & Ghosh, Uttam, 2023. "Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Babaei, A. & Jafari, H. & Banihashemi, S. & Ahmadi, M., 2021. "Mathematical analysis of a stochastic model for spread of Coronavirus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Yu, Zhenhua & Arif, Robia & Fahmy, Mohamed Abdelsabour & Sohail, Ayesha, 2021. "Self organizing maps for the parametric analysis of COVID-19 SEIRS delayed model," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Hussain, Takasar & Aslam, Adnan & Ozair, Muhammad & Tasneem, Fatima & Gómez-Aguilar, J.F., 2021. "Dynamical aspects of pine wilt disease and control measures," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    8. Ogunmiloro, Oluwatayo Michael, 2021. "Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Xu, Changjin & Liu, Zixin & Pang, Yicheng & Akgül, Ali, 2023. "Stochastic analysis of a COVID-19 model with effects of vaccination and different transition rates: Real data approach," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    10. Amouch, Mohamed & Karim, Noureddine, 2021. "Modeling the dynamic of COVID-19 with different types of transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Zarin, Rahat & Khan, Amir & Inc, Mustafa & Humphries, Usa Wannasingha & Karite, Touria, 2021. "Dynamics of five grade leishmania epidemic model using fractional operator with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    12. Din, Anwarud & Li, Yongjin & Yusuf, Abdullahi, 2021. "Delayed hepatitis B epidemic model with stochastic analysis," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Yassine Sabbar & Asad Khan & Anwarud Din, 2022. "Probabilistic Analysis of a Marine Ecological System with Intense Variability," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    14. Zhang, Ge & Li, Zhiming & Din, Anwarud & Chen, Tao, 2024. "Dynamic analysis and optimal control of a stochastic COVID-19 model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 498-517.
    15. Parsamanesh, Mahmood & Erfanian, Majid, 2021. "Stability and bifurcations in a discrete-time SIVS model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    16. Yusuf, Abdullahi & Tasiu Mustapha, Umar & Abdulkadir Sulaiman, Tukur & Hincal, Evren & Bayram, Mustafa, 2021. "Modeling the effect of horizontal and vertical transmissions of HIV infection with Caputo fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    17. Xuan Leng & Asad Khan & Anwarud Din, 2023. "Probability Analysis of a Stochastic Non-Autonomous SIQRC Model with Inference," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    18. Shringi, Sakshi & Sharma, Harish & Rathie, Pushpa Narayan & Bansal, Jagdish Chand & Nagar, Atulya, 2021. "Modified SIRD Model for COVID-19 Spread Prediction for Northern and Southern States of India," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ijhplm:v:36:y:2021:i:3:p:754-783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0749-6753 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.