IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i1p58-68.html
   My bibliography  Save this article

Longitudinal and time‐to‐drop‐out joint models can lead to seriously biased estimates when the drop‐out mechanism is at random

Author

Listed:
  • Christos Thomadakis
  • Loukia Meligkotsidou
  • Nikos Pantazis
  • Giota Touloumi

Abstract

Missing data are common in longitudinal studies. Likelihood‐based methods ignoring the missingness mechanism are unbiased provided missingness is at random (MAR); under not‐at‐random missingness (MNAR), joint modeling is commonly used, often as part of sensitivity analyses. In our motivating example of modeling CD4 count trajectories during untreated HIV infection, CD4 counts are mainly censored due to treatment initiation, with the nature of this mechanism remaining debatable. Here, we evaluate the bias in the disease progression marker's change over time (slope) of a specific class of joint models, termed shared‐random‐effects‐models (SREMs), under MAR drop‐out and propose an alternative SREM model. Our proposed model relates drop‐out to both the observed marker's data and the corresponding random effects, in contrast to most SREMs, which assume that the marker and the drop‐out processes are independent given the random effects. We analytically calculate the asymptotic bias in two SREMs under specific MAR drop‐out mechanisms, showing that the bias in marker's slope increases as the drop‐out probability increases. The performance of the proposed model, and other commonly used SREMs, is evaluated under specific MAR and MNAR scenarios through simulation studies. Under MAR, the proposed model yields nearly unbiased slope estimates, whereas the other SREMs yield seriously biased estimates. Under MNAR, the proposed model estimates are approximately unbiased, whereas those from the other SREMs are moderately to heavily biased, depending on the parameterization used. The examined models are also fitted to real data and results are compared/discussed in the light of our analytical and simulation‐based findings.

Suggested Citation

  • Christos Thomadakis & Loukia Meligkotsidou & Nikos Pantazis & Giota Touloumi, 2019. "Longitudinal and time‐to‐drop‐out joint models can lead to seriously biased estimates when the drop‐out mechanism is at random," Biometrics, The International Biometric Society, vol. 75(1), pages 58-68, March.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:58-68
    DOI: 10.1111/biom.12986
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12986
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Geert Molenberghs & Caroline Beunckens & Cristina Sotto & Michael G. Kenward, 2008. "Every missingness not at random model has a missingness at random counterpart with equal fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 371-388, April.
    2. N. Pantazis & G. Touloumi & A. S. Walker & A. G. Babiker, 2005. "Bivariate modelling of longitudinal measurements of two human immunodeficiency type 1 disease progression markers in the presence of informative drop‐outs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(2), pages 405-423, April.
    3. Chandan Saha & Michael P. Jones, 2005. "Asymptotic bias in the linear mixed effects model under non‐ignorable missing data mechanisms," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 167-182, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuriko Takeda & Toshihiro Misumi & Kouji Yamamoto, 2022. "Joint Models for Incomplete Longitudinal Data and Time-to-Event Data," Mathematics, MDPI, vol. 10(19), pages 1-7, October.
    2. Edward F. Vonesh & Tom Greene, 2022. "Biased estimation with shared parameter models in the presence of competing dropout mechanisms," Biometrics, The International Biometric Society, vol. 78(1), pages 399-406, March.
    3. D. Claire Miller & Samantha MaWhinney & Jennifer L. Patnaik & Karen L. Christopher & Anne M. Lynch & Brandie D. Wagner, 2022. "Predictors of refraction prediction error after cataract surgery: a shared parameter model to account for missing post-operative measurements," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 343-364, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brenden Bishop & Minjeong Jeon, 2016. "Book Review," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1164-1167, December.
    2. Morten Overgaard & Stefan Nygaard Hansen, 2021. "On the assumption of independent right censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1234-1255, December.
    3. Shu Xu & Shelley A. Blozis, 2011. "Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 237-256, April.
    4. Kott Phillip S. & Liao Dan, 2018. "Calibration Weighting for Nonresponse with Proxy Frame Variables (So that Unit Nonresponse Can Be Not Missing at Random)," Journal of Official Statistics, Sciendo, vol. 34(1), pages 107-120, March.
    5. Caroline Beunckens & Cristina Sotto & Geert Molenberghs & Geert Verbeke, 2009. "A multifaceted sensitivity analysis of the Slovenian public opinion survey data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 171-196, May.
    6. Marco Doretti & Sara Geneletti & Elena Stanghellini, 2018. "Missing Data: A Unified Taxonomy Guided by Conditional Independence," International Statistical Review, International Statistical Institute, vol. 86(2), pages 189-204, August.
    7. Hairu Wang & Zhiping Lu & Yukun Liu, 2023. "Score test for missing at random or not under logistic missingness models," Biometrics, The International Biometric Society, vol. 79(2), pages 1268-1279, June.
    8. Andrew T. Karl & Yan Yang & Sharon L. Lohr, 2013. "A Correlated Random Effects Model for Nonignorable Missing Data in Value-Added Assessment of Teacher Effects," Journal of Educational and Behavioral Statistics, , vol. 38(6), pages 577-603, December.
    9. Rianne Margaretha Schouten & Gerko Vink, 2021. "The Dance of the Mechanisms: How Observed Information Influences the Validity of Missingness Assumptions," Sociological Methods & Research, , vol. 50(3), pages 1243-1258, August.
    10. Daniel, Rhian M. & Kenward, Michael G., 2012. "A method for increasing the robustness of multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1624-1643.
    11. Geert Molenberghs, 2012. "Discussion Contribution to 091037PR4 (Ghosh, Taylor, and Sargent)," Biometrics, The International Biometric Society, vol. 68(1), pages 233-235, March.
    12. Janicki, Ryan & Malec, Donald, 2013. "A Bayesian model averaging approach to analyzing categorical data with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 600-614.
    13. Kim, Seongyong & Park, Yousung & Kim, Daeyoung, 2015. "On missing-at-random mechanism in two-way incomplete contingency tables," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 196-203.
    14. Wan-Lun Wang & Min Liu & Tsung-I Lin, 2017. "Robust skew-t factor analysis models for handling missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 649-672, November.
    15. Anna Ivanova & Geert Molenberghs & Geert Verbeke, 2017. "Mechanism for missing data incorporated in joint modelling of ordinal responses," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 1049-1064, November.
    16. Nikos Pantazis & Giota Touloumi, 2010. "Analyzing longitudinal data in the presence of informative drop-out: The jmre1 command," Stata Journal, StataCorp LP, vol. 10(2), pages 226-251, June.
    17. D. M. Farewell & C. Huang & V. Didelez, 2017. "Ignorability for general longitudinal data," Biometrika, Biometrika Trust, vol. 104(2), pages 317-326.
    18. Yuzhe Liu & Vanathi Gopalakrishnan, 2017. "An Overview and Evaluation of Recent Machine Learning Imputation Methods Using Cardiac Imaging Data," Data, MDPI, vol. 2(1), pages 1-15, January.
    19. Yuan, Ke-Hai, 2009. "Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1900-1918, October.
    20. Margarita Moreno-Betancur & Grégoire Rey & Aurélien Latouche, 2015. "Direct likelihood inference and sensitivity analysis for competing risks regression with missing causes of failure," Biometrics, The International Biometric Society, vol. 71(2), pages 498-507, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:58-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.