IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v29i3y2011p382-396.html
   My bibliography  Save this article

Bayesian Inference in Structural Second-Price Common Value Auctions

Author

Listed:
  • Wegmann, Bertil
  • Villani, Mattias

Abstract

Structural econometric auction models with explicit game-theoretic modeling of bidding strategies have been quite a challenge from a methodological perspective, especially within the common value framework. We develop a Bayesian analysis of the hierarchical Gaussian common value model with stochastic entry introduced by Bajari and Hortaçsu (2003). A key component of our approach is an accurate and easily interpretable analytical approximation of the equilibrium bid function, resulting in a fast and numerically stable evaluation of the likelihood function. The analysis is also extended to situations with positive valuations using a hierarchical Gamma model. We use a Bayesian variable selection algorithm that simultaneously samples the posterior distribution of the model parameters and does inference on the choice of covariates. The methodology is applied to simulated data and to a carefully collected dataset from eBay with bids and covariates from 1000 coin auctions. It is demonstrated that the Bayesian algorithm is very efficient and that the approximation error in the bid function has virtually no effect on the model inference. Both models fit the data well, but the Gaussian model outperforms the Gamma model in an out-of-sample forecasting evaluation of auction prices.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Wegmann, Bertil & Villani, Mattias, 2011. "Bayesian Inference in Structural Second-Price Common Value Auctions," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 382-396.
  • Handle: RePEc:bes:jnlbes:v:29:i:3:y:2011:p:382-396
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jbes.2011.08289
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:29:i:3:y:2011:p:382-396. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.