IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v21y2003i3p354-67.html
   My bibliography  Save this article

The Shape of the Risk Premium: Evidence from a Semiparametric Generalized Autoregressive Conditional Heteroscedasticity Model

Author

Listed:
  • Linton, Oliver
  • Perron, Benoit

Abstract

We examine the relationship between the risk premium on the Center for Research on Security Prices (CRSP) value-weighted index total return and its conditional variance. We propose a new semiparametric model in which the conditional variance process is parametric and the conditional mean is an arbitrary function of the conditional variance. For monthly CRSP value-weighted excess returns, the relationship between the two moments that we uncover is nonlinear and nonmonotonic.

Suggested Citation

  • Linton, Oliver & Perron, Benoit, 2003. "The Shape of the Risk Premium: Evidence from a Semiparametric Generalized Autoregressive Conditional Heteroscedasticity Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 354-367, July.
  • Handle: RePEc:bes:jnlbes:v:21:y:2003:i:3:p:354-67
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Zefang & Song, Xinyuan & Li, Yuan, 2023. "Bayesian Analysis of ARCH-M model with a dynamic latent variable," Econometrics and Statistics, Elsevier, vol. 28(C), pages 47-62.
    2. Jie Zhu, 2008. "FIEGARCH-M and and International Crises: A Cross-Country Analysis," CREATES Research Papers 2008-16, Department of Economics and Business Economics, Aarhus University.
    3. Seok Young Hong & Oliver Linton, 2016. "Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in?finite order," CeMMAP working papers CWP53/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Christian Conrad & Karin Loch, 2015. "Anticipating Long‐Term Stock Market Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1090-1114, November.
    5. Jing Li, 2021. "On Estimating Risk Premium With Flexible Fourier Form," Economics Bulletin, AccessEcon, vol. 41(3), pages 1026-1035.
    6. Hong, Seok Young & Linton, Oliver, 2020. "Nonparametric estimation of infinite order regression and its application to the risk-return tradeoff," Journal of Econometrics, Elsevier, vol. 219(2), pages 389-424.
    7. Conrad, Christian & Mammen, Enno, 2016. "Asymptotics for parametric GARCH-in-Mean models," Journal of Econometrics, Elsevier, vol. 194(2), pages 319-329.
    8. Christian M. Hafner & Dimitra Kyriakopoulou, 2021. "Exponential-Type GARCH Models With Linear-in-Variance Risk Premium," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 589-603, March.
    9. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    10. repec:awi:wpaper:0473 is not listed on IDEAS
    11. Dias, Gustavo Fruet, 2017. "The time-varying GARCH-in-mean model," Economics Letters, Elsevier, vol. 157(C), pages 129-132.
    12. Enno Mammen & Jens Perch Nielsen & Michael Scholz & Stefan Sperlich, 2019. "Conditional Variance Forecasts for Long-Term Stock Returns," Risks, MDPI, vol. 7(4), pages 1-22, November.
    13. Likai Chen & Ekaterina Smetanina & Wei Biao Wu, 2022. "Estimation of nonstationary nonparametric regression model with multiplicative structure [Income and wealth distribution in macroeconomics: A continuous-time approach]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 176-214.
    14. Seok Young Hong & Oliver Linton, 2016. "Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in finite order," CeMMAP working papers 53/16, Institute for Fiscal Studies.
    15. Linton, Oliver & Sancetta, Alessio, 2009. "Consistent estimation of a general nonparametric regression function in time series," Journal of Econometrics, Elsevier, vol. 152(1), pages 70-78, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:21:y:2003:i:3:p:354-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.